ECE 3084

Quiz 1

School of Electrical and Computer Engineering
 Georgia Institute of Technology

February 25, 2016

Name: \qquad

1. The quiz is closed book, closed notes, except for one 2 -sided sheet of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit. Exceptions are Prob. 1(c) and Prob. 4.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1. (20 points) Let $g(t)=t(u(t)-u(t-1))$.
(a) Its energy is $E=$ \square
(b) Evaluate the integral $\int_{-\infty}^{1} g(t) \delta(t-0.6) d t=\square$.
(c) Shown below are eight different plots of: $\quad x(t)=g(t+T)+g(\tau-\beta t)$,
labeled A through H. Match each plot to the corresponding set of constants $\{T, \beta, \tau\}$ by writing a letter (from A through H) in each answer box:

PROBLEM 2. (20 points)
Consider the signals $x(t)$ and $h(t)$ shown on the right:

Here is a plot of the convolution $y(t)=x(t) * h(t)$, on a different scale:

(a) Specify the amplitude A and times t_{1} through t_{4} by writing numbers in the 5 answer boxes above.
(b) Specify equations as a function of t for the output $y(t)$ in the two missing regions below:

PROBLEM 3. (20 points)

Shown below are the relationships between the input $x(t)$ and output $y(t)$ of two systems. Specify which properties listed on the left are satisfied by each: (Brief explanations are OK!)

PROBLEM 4. (20 points)
Shown on the left are impulse responses of eight different LTI filters, labeled A through H. (The impulse responses are all zero before $t=0$ and after $t=1$.) Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding impulse response by writing a letter (A through H) in each answer box.

PROBLEM 5. (20 points)

The signal $x(t)=\sum_{k=-2}^{2} 2^{|k|} e^{j k \pi t}$ is fed into the following cascade of three LTI systems:
$x(t)=\sum_{k=-2}^{2} 2^{|k|} e^{j k \pi t} \rightarrow h_{1}(t)=\frac{\sin (W t)}{\pi t} \rightarrow H_{2}(j \omega)=e^{-j \omega t_{0}} \rightarrow H_{3}(j \omega)=j \omega \rightarrow y(t)$
The first system has impulse response $h_{1}(t)=\sin (W t) /(\pi t)$; the second system is a delay-by- t_{0} system with frequency response $H_{2}(j \omega)=e^{-j \omega t_{0}}$; the third system is a differentiator, with frequency response $H_{3}(j \omega)=j \omega$. The parameters W and t_{0} are unspecified.
(a) Evaluate the integral $\int_{-10}^{60} x(t) d t=\square$.
(b) Choose the positive parameters W and t_{0} so that the overall output will be zero $(y(t)=0)$:

(c) Choose the nonzero parameters W and t_{0} so that the overall output will be a sinusoid of the form $y(t)=A \cos (\pi t)$, and also specify the sinusoid amplitude A :

(THIS PAGE LEFT INTENTIONALLY BLANK)

	Table of Fourier Transform Pairs	
Signal Name	Time-Domain: $x(t)$	Frequency-Domain: $X(j \omega)$
Right-sided exponential	$e^{-a t} u(t) \quad(a>0)$	$\frac{1}{a+j \omega}$
Left-sided exponential	$e^{b t} u(-t) \quad(b>0)$	$\frac{1}{b-j \omega}$
Square pulse	$[u(t+T / 2)-u(t-T / 2)]$	$\frac{\sin (\omega T / 2)}{\omega / 2}$
"sinc" function	$\frac{\sin \left(\omega_{0} t\right)}{\pi t}$	$\left[u\left(\omega+\omega_{0}\right)-u\left(\omega-\omega_{0}\right)\right]$
Impulse	$\delta(t)$	1
Shifted impulse	$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$
Complex exponential	$e^{j \omega_{0} t}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$
General cosine	$A \cos \left(\omega_{0} t+\phi\right)$	$\pi A e^{j \phi} \delta\left(\omega-\omega_{0}\right)+\pi A e^{-j \phi} \delta\left(\omega+\omega_{0}\right)$
Cosine	$\cos \left(\omega_{0} t\right)$	$\pi \delta\left(\omega-\omega_{0}\right)+\pi \delta\left(\omega+\omega_{0}\right)$
Sine	$\sin \left(\omega_{0} t\right)$	$-j \pi \delta\left(\omega-\omega_{0}\right)+j \pi \delta\left(\omega+\omega_{0}\right)$
General periodic signal	$\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}$	$\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right)$
Impulse train	$\sum_{n=-\infty}^{\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k / T)$

Table of Fourier Transform Properties		
Property Name	Time-Domain $x(t)$	Frequency-Domain $X(j \omega)$
Linearity	$a x_{1}(t)+b x_{2}(t)$	$a X_{1}(j \omega)+b X_{2}(j \omega)$
Conjugation	$x^{*}(t)$	$X^{*}(-j \omega)$
Time-Reversal	$x(-t)$	$X(-j \omega)$
Scaling	$f(a t)$	$\frac{1}{\|a\|} X(j(\omega / a))$
Delay	$x\left(t-t_{d}\right)$	$e^{-j \omega t_{d}} X(j \omega)$
Modulation	$x(t) e^{j \omega_{0} t}$	$X\left(j\left(\omega-\omega_{0}\right)\right)$
Modulation	$x(t) \cos \left(\omega_{0} t\right)$	$\frac{1}{2} X\left(j\left(\omega-\omega_{0}\right)\right)+\frac{1}{2} X\left(j\left(\omega+\omega_{0}\right)\right)$
Differentiation	$\frac{d^{k} x(t)}{d t^{k}}$	$(j \omega)^{k} X(j \omega)$
Convolution	$x(t) * h(t)$	$X(j \omega) H(j \omega)$
Multiplication	$x(t) p(t)$	$\frac{1}{2 \pi} X(j \omega) * P(j \omega)$

QUIZ 1

School of Electrical and Computer Engineering
 Georgia Institute of Technology

February 25, 2016

1. The quiz is closed book, closed notes, except for one 2 -sided sheet of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit. Exceptions are Prob. 1(c) and Prob. 4.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1. (20 points) Let $g(t)=t(u(t)-u(t-1))$.
(a) Its energy is $E=\frac{1}{3}=\int_{0}^{1} t^{2} d t$
(b) Evaluate the integral $\int_{-\infty}^{1} g(t) \delta(t-0.6) d t=0.6 \quad g\left(-\beta\left(t-\frac{L}{\beta}\right)\right)$
(c) Shown below are eight different plots of: $x(t)=g(t+T)+\overbrace{g(\tau-\beta t)}$,
labeled A through H . Match each plot to the corresponding set of constants $\{T, \beta, \tau\}$ by writing a letter (from A through H) in each answer box:

$$
T=-0.2
$$

PROBLEM 2. (20 points)
Consider the signals $x(t)$ and $h(t)$ shown on the right:

Here is a plot of the convolution $y(t)=x(t) * h(t)$, on a different scale:

2
3
(a) Specify the amplitude A and times t_{1} through t_{4} by writing numbers in the 5 answer boxes above.
(b) Specify equations as a function of t for the output $y(t)$ in the two missing regions below:

PROBLEM 3. (20 points)
Shown below are the relationships between the input $x(t)$ and output $y(t)$ of two systems. Specify which properties listed on the left are satisfied by each: (Brief explanations are OK!)

SYSTEM \#1: $y(t)=x(|t|)$
Linear?

Time Invariant?

Memoryless?

$$
y(-1)=x(+1)
$$

Invertible?

$$
x(t) \text { for } t<0
$$

is unobserved

Causal?

Stable?

$$
y(-1)=x(+1)
$$

looks into future

SYSTEM \#2: $y(t)=x(\cos (t))$

$x_{i}(t-3) \rightarrow-\Omega \Omega \Omega \cdots$ s. mater were $\neq y_{1}(t-3)$
YES NO

$$
y(0)=x(1)
$$

$\stackrel{100}{\times 8}$

$$
x(t) \text { for } t \neq[-1,1]
$$ is unobserved

$$
y(0)=x(1)
$$

looks into future
义"

$$
B 1 B O
$$

PROBLEM 4. (20 points)
Shown on the left are impulse responses of eight different LTI filters, labeled A through H . (The impulse responses are all zero before $t=0$ and after $t=1$.) Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding impulse response by writing a letter (A through H) in each answer box.

triangle $x \cos (\cdot) \leftrightarrow \operatorname{sinc}^{2}(\omega \pm 40 \pi)$

$$
\text { Euler } \Rightarrow x(t)=1+4 \cos (\pi t)+8 \cos (2 \pi t)
$$

PROBLEM 5. (20 points)

$$
\begin{aligned}
& \text { The signal } x(t)=\sum_{k=-2}^{2} 2^{|k|} e^{j k \pi t} \text { i. fed into the following cascade of three LTI systems: } \\
& x(t)=\sum_{k=-2}^{2}{ }_{2}^{|k|} e^{j k \pi t} \rightarrow h_{1}(t)=\frac{\sin (W t)}{\pi t} \rightarrow H_{2}(j \omega)=e^{-j \omega t_{0}} \rightarrow H_{3}(j \omega)=j \omega \rightarrow y(t)
\end{aligned}
$$

The first system has impulse response $h_{1}(t)=\sin (W t) /(\pi t)$; the second system is a delay-by- t_{0} system with frequency response $H_{2}(j \omega)=e^{-j \omega t_{0}}$; the third system is a differentiator, with frequency response $H_{3}(j \omega)=j \omega$. The parameters W and t_{0} are unspecified.
(a) Evaluate the integral $\int_{-10}^{60} x(t) d t=$ \square

$$
\int_{-10}^{60} 1 d t+\int_{-10}^{60} 4 \operatorname{asc}(\pi t) d t+\int_{0}^{60} 8 \cos (2 \pi t) d t=\int_{-10}^{60} 1 d t=70
$$

(b) Choose the positive parameters W and t_{0} so that the overall output will be zero $(y(t)=0)$:
input is constant plus a

$$
W=\text { e.j. } \frac{\pi}{2}, \quad t_{0}=\begin{gathered}
\text { does not } \\
\text { matter }
\end{gathered} .
$$

sinusoid at π plus a
sinusoid at 2π.
Differentiator kills the constant.
Choose W to reject the two sinusoids. Any $W<\pi$ does the job.
(c) Choose the nonzero parameters W and t_{0} so that the overall output will be a sinusoid of the form $y(t)=A \cos (\pi t)$, and also specify the sinusoid amplitude A :

$$
w=\log 1.5 \pi \cdot 0.5 \cdot n=4 \pi
$$

Choose W in range $\pi<W<2 \pi$ to reject high-frem sines oil, and keep low -frey sinusoid.
Output will then be a delayed version of the derivative f of the low-frey smissoil:

$$
y(t)=\left.\frac{d}{d t} 4 \cos (\pi t)\right|_{t-t_{0}}=-4 \pi \sin \left(\pi\left(t-t_{0}\right)\right)=4 \pi^{2} \cos (\pi t)
$$

