ECE 3084

Quiz 1

School of Electrical and Computer Engineering Georgia Institute of Technology February 25, 2016

Name:

- 1. The quiz is closed book, closed notes, except for one 2-sided sheet of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers *must be accompanied by concise justifications* to receive full credit. Exceptions are Prob. 1(c) and Prob. 4.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1. (20 points) Let g(t) = t(u(t) - u(t-1)).

- (a) Its energy is E =
- (b) Evaluate the integral $\int_{-\infty}^{1} g(t) \delta(t 0.6) dt =$
- (c) Shown below are eight different plots of: $x(t) = g(t + T) + g(\tau \beta t)$, labeled A through H. Match each plot to the corresponding set of constants $\{T, \beta, \tau\}$ by writing a letter (from A through H) in each answer box:

T	β	τ	ANSWER
0.2	5	0	
0	10	8	
0.2	5	1	
-0.2	5	2	
0	10	6	
0	10	0	
0.2	5	5	
-0.2	10	5	

Here is a plot of the convolution y(t) = x(t) * h(t), on a different scale:

- (a) Specify the amplitude A and times t_1 through t_4 by writing numbers in the 5 answer boxes above.
- (b) Specify equations as a function of t for the output y(t) in the two missing regions below:

PROBLEM 3. (20 points)

Shown below are the relationships between the input x(t) and output y(t) of two systems. Specify which properties listed on the left are satisfied by each: (*Brief* explanations are OK!)

PROBLEM 4. (20 points)

Shown on the left are impulse responses of eight different LTI filters, labeled A through H. (The impulse responses are all zero before t = 0 and after t = 1.) Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding impulse response by writing a letter (A through H) in each answer box.

PROBLEM 5. (20 points)

The signal
$$x(t) = \sum_{k=-2}^{2} 2^{|k|} e^{jk\pi t}$$
 is fed into the following cascade of three LTI systems:
 $x(t) = \sum_{k=-2}^{2} 2^{|k|} e^{jk\pi t}$
 $h_1(t) = \frac{\sin(Wt)}{\pi t}$
 $H_2(j\omega) = e^{-j\omega t_0}$
 $H_3(j\omega) = j\omega$
 $y(t)$

The first system has impulse response $h_1(t) = \sin(Wt)/(\pi t)$; the second system is a delay-by- t_0 system with frequency response $H_2(j\omega) = e^{-j\omega t_0}$; the third system is a differentiator, with frequency response $H_3(j\omega) = j\omega$. The parameters W and t_0 are unspecified.

(a) Evaluate the integral
$$\int_{-10}^{60} x(t) dt =$$

(b) Choose the positive parameters W and t_0 so that the overall output will be zero (y(t) = 0):

(c) Choose the nonzero parameters W and t_0 so that the overall output will be a sinusoid of the form $y(t) = A\cos(\pi t)$, and also specify the sinusoid amplitude A:

(THIS PAGE LEFT INTENTIONALLY BLANK)

Table of Fourier Transform Pairs			
Signal Name	Time-Domain: $x(t)$	Frequency-Domain: $X(j\omega)$	
Right-sided exponential	$e^{-at}u(t)$ $(a > 0)$	$\frac{1}{a+j\omega}$	
Left-sided exponential	$e^{bt}u(-t) (b>0)$	$\frac{1}{b-j\omega}$	
Square pulse	[u(t + T/2) - u(t - T/2)]	$\frac{\sin(\omega T/2)}{\omega/2}$	
"sinc" function	$\frac{\sin(\omega_0 t)}{\pi t}$	$[u(\omega + \omega_0) - u(\omega - \omega_0)]$	
Impulse	$\delta(t)$	1	
Shifted impulse	$\delta(t-t_0)$	$e^{-j\omega t_0}$	
Complex exponential	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	
General cosine	$A\cos(\omega_0 t + \phi)$	$\pi A e^{j\phi} \delta(\omega - \omega_0) + \pi A e^{-j\phi} \delta(\omega + \omega_0)$	
Cosine	$\cos(\omega_0 t)$	$\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0)$	
Sine	$\sin(\omega_0 t)$	$-j\pi\delta(\omega-\omega_0)+j\pi\delta(\omega+\omega_0)$	
General periodic signal	$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$\sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0)$	
Impulse train	$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta(\omega - 2\pi k/T)$	

Table of Fourier Transform Properties				
Property Name	Time-Domain $x(t)$	Frequency-Domain $X(j\omega)$		
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(j\omega) + bX_2(j\omega)$		
Conjugation	$x^*(t)$	$X^*(-j\omega)$		
Time-Reversal	x(-t)	$X(-j\omega)$		
Scaling	f(at)	$rac{1}{ a }X(j(\omega/a))$		
Delay	$x(t-t_d)$	$e^{-j\omega t_d}X(j\omega)$		
Modulation	$x(t)e^{j\omega_0 t}$	$X(j(\omega-\omega_0))$		
Modulation	$x(t)\cos(\omega_0 t)$	$\frac{1}{2}X(j(\omega-\omega_0)) + \frac{1}{2}X(j(\omega+\omega_0))$		
Differentiation	$\frac{d^k x(t)}{dt^k}$	$(j\omega)^k X(j\omega)$		
Convolution	x(t) * h(t)	$X(j\omega)H(j\omega)$		
Multiplication	x(t)p(t)	$\frac{1}{2\pi}X(j\omega)*P(j\omega)$		

ECE 3084

Quiz 1

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY FEBRUARY 25, 2016

Name: ____

SOLUTIONS

- 1. The quiz is closed book, closed notes, except for one 2-sided sheet of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers *must be accompanied by concise justifications* to receive full credit. Exceptions are Prob. 1(c) and Prob. 4.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

Here is a plot of the convolution y(t) = x(t) * h(t), on a different scale:

- (a) Specify the amplitude A and times t_1 through t_4 by writing numbers in the 5 answer boxes above.
- (b) Specify equations as a function of t for the output y(t) in the two missing regions below:

PROBLEM 3. (20 points)

Shown below are the relationships between the input x(t) and output y(t) of two systems. Specify which properties listed on the left are satisfied by each: (*Brief* explanations are OK!)

3

PROBLEM 4. (20 points)

Shown on the left are impulse responses of eight different LTI filters, labeled A through H. (The impulse responses are all zero before t = 0 and after t = 1.) Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding impulse response by writing a letter (A through H) in each answer box.

 $= \operatorname{Euler} \Rightarrow \chi(t) = 1 + 4 \operatorname{cus}(\pi t) + 8 \operatorname{cos}(\pi t)$

PROBLEM 5. (20 points) The signal $x(t) = \sum_{k=-2}^{2} 2^{|k|} e^{jk\pi t}$ is fed into the following cascade of three LTI systems: $x(t) = \sum_{k=-2}^{2} 2^{|k|} e^{jk\pi t}$ $h_1(t) = \frac{\sin(Wt)}{\pi t}$ $H_2(j\omega) = e^{-j\omega t_0}$ $H_3(j\omega) = j\omega$ y(t)

The first system has impulse response $h_1(t) = \sin(Wt)/(\pi t)$; the second system is a delay-by- t_0 system with frequency response $H_2(j\omega) = e^{-j\omega t_0}$; the third system is a differentiator, with frequency response $H_3(j\omega) = j\omega$. The parameters W and t_0 are unspecified.

(a) Evaluate the integral
$$\int_{-10}^{60} x(t) dt = \frac{70}{70}$$
.
 $\int_{-10}^{60} 1 dt + \int_{-10}^{60} 40 s(\pi t) dt + \int_{-10}^{60} 8 \cos(2\pi t) dt = \int_{-10}^{60} 1 dt = 70$.

(b) Choose the positive parameters W and t_0 so that the overall output will be zero (y(t) = 0):

input is constant plus a
$$W = e.g. \frac{TL}{2}$$
, $t_0 = \frac{does not}{matter}$.
Sinusoid at 2TT.
p:fferentiator fulls the constant.
phoose W to reject the two sinusoids. Any W

(c) Choose the nonzero parameters W and t_0 so that the overall output will be a sinusoid of the form $y(t) = A\cos(\pi t)$, and also specify the sinusoid amplitude A:

$$W = \begin{bmatrix} e.g. & 1.5TT \end{bmatrix}, \quad t_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}, \quad A = \begin{bmatrix} 4TT \end{bmatrix}.$$

Choose W in range $T < W < 2TT$ to reject high-freq sinusoid, and keep
(ow-free sinusoid-
Output will then be a delayed version of the derivative t of the low-freq sinusoid

$$Y(t) = \frac{d}{dt} \left| 4\cos(\pi t) \right|_{t=t_0} = -4TT \sin(\pi t(t-t_0)) = 4TT \cos(\pi t)$$

when $t_0 = 0.5$