## ECE 3084

### Quiz 1

# School of Electrical and Computer Engineering Georgia Institute of Technology February 19, 2015

Name:

- 1. The quiz is closed book, except for one 2-sided sheet of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

| Problem | Points | Score |
|---------|--------|-------|
| 1       | 20     |       |
| 2       | 20     |       |
| 3       | 20     |       |
| 4       | 20     |       |
| 5       | 20     |       |
| TOTAL:  | 100    |       |



**PROBLEM 2.** Consider the periodic signal shown below:



(c) Suppose that this periodic signal x(t) is passed through an ideal *high-pass filter* with cutoff frequency of  $40\pi$  rad/s, as shown below:



Carefully sketch the output signal y(t) after the high-pass filter, for time -0.01 < t < 0.09:



(d) Instead, suppose that x(t) is passed through an ideal *band-pass filter* that only passes frequencies between  $\omega_1$  and  $2\omega_1$ , as shown below:



If the output is a *single sinusoid*, of the form say  $z(t) = A\cos(2\pi f_c t + \theta)$ , then it must be that the filter parameter satisfies:



**PROBLEM 3.** For each impulse response given below, specify whether it is the impulse response of a low-pass filter (LPF), high-pass filter (HPF), bandpass filter (BPF), or none of the above (indicating your answer by circling one of the four options):

(a) 
$$h(t) = \frac{\sin(40\pi t)}{\pi t}$$
  $\Rightarrow$  [LPF][HPF][BPF][none].

(b) 
$$h(t) = \frac{\sin(880\pi t)}{\pi t} * \frac{\sin(440\pi t)}{\pi t}$$
 (convolution)  $\Rightarrow$  [LPF][HPF][BPF][ none ].

(c) 
$$h(t) = \frac{\sin(880\pi t)}{\pi t} - \frac{\sin(440\pi t)}{\pi t} \Rightarrow [LPF][HPF][BPF][none].$$

(d) 
$$h(t) = \frac{\sin(40\pi t)}{\pi t} \cos(880\pi t)$$
  $\Rightarrow$  [LPF][HPF][BPF][ none].

(e) 
$$h(t) = \frac{\sin(40\pi t)}{\pi t} - \frac{\sin(440\pi t)}{\pi t} + \delta(t) \Rightarrow [LPF][HPF][BPF][none].$$

(f) 
$$h(t) = \frac{\sin(4\pi t)}{\pi t} + 2\cos(6\pi t)\frac{\sin(2\pi t)}{\pi t} \Rightarrow [LPF][HPF][BPF][none].$$

(g) 
$$h(t) = \delta(t) - \frac{\sin(300\pi t)}{\pi t} \Rightarrow [LPF][HPF][BPF][none].$$

(h) 
$$h(t) = \int_{-\infty}^{\infty} \left( \delta(\tau) - \frac{\sin(16\pi\tau)}{\pi\tau} \right) \left( \frac{\sin(300\pi(t-\tau))}{\pi(t-\tau)} \right) d\tau \Rightarrow [LPF][HPF][BPF][none].$$

**PROBLEM 4.** Shown on the left are impulse responses of eight different LTI filters, labeled A through H. (The impulse responses are all zero before t = 0 and after t = 20.) Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding impulse response by writing a letter (A through H) in each answer box.



**PROBLEM 5.** Consider an LTI system whose impulse response is:

$$h(t) = e^{-(t+1)}u(t+1) - e^{-(t-1)}u(t-1),$$

as sketched below:



(a) Suppose that the input to this system is a sinusoid of the form  $x(t) = \cos(2\pi f_0 t)$ . Specify *three* different values for the frequency  $f_0$  that will result in an output that is zero, i.e. y(t) = 0 for all t:



### ECE 3084

### Quiz 1

# School of Electrical and Computer Engineering Georgia Institute of Technology February 19, 2015

Name:

**KEY** 

- 1. The quiz is closed book, except for one 2-sided sheet of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

| Problem | Points | Score |
|---------|--------|-------|
| 1       | 20     |       |
| 2       | 20     |       |
| 3       | 20     |       |
| 4       | 20     |       |
| 5       | 20     |       |
| TOTAL:  | 100    |       |

**PROBLEM 1.** Consider the signal x(t) shown below:



**PROBLEM 2.** Consider the periodic signal shown below:



- (a) The fundamental period of x(t) is  $T_0 = 0.03$  seconds.
- (b) The zeroth coefficient in the Fourier series  $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk_2\pi t/T_0}$  is  $a_0 = 1$
- (c) Suppose that this periodic signal x(t) is passed through an ideal *high-pass filter* with cutoff frequency of  $40\pi$  rad/s, as shown below:



Carefully sketch the output signal y(t) after the high-pass filter, for time -0.01 < t < 0.09:



(d) Instead, suppose that x(t) is passed through an ideal *band-pass filter* that only passes frequencies between  $\omega_1$  and  $2\omega_1$ , as shown below:



If the output is a *single sinusoid*, of the form say  $z(t) = A\cos(2\pi f_c t + \theta)$ , then it must be that the filter parameter satisfies:



**PROBLEM 3.** For each impulse response given below, specify whether it is the impulse response of a low-pass filter (LPF), high-pass filter (HPF), bandpass filter (BPF), or none of the above (indicating your answer by circling one of the four options):

(a) 
$$h(t) = \frac{\sin(40\pi t)}{\pi t}$$
  $\Rightarrow$  [LPF] HPF][BPF][none].  
(b)  $h(t) = \frac{\sin(880\pi t)}{\pi t} * \frac{\sin(440\pi t)}{\pi t}$  (convolution)  $\Rightarrow$  [LPF] HPF][BPF][none].  
(c)  $h(t) = \frac{\sin(880\pi t)}{\pi t} - \frac{\sin(440\pi t)}{\pi t}$   $\Rightarrow$  [LPF][HPF][BPF][none].  
(d)  $h(t) = \frac{\sin(40\pi t)}{\pi t} \cos(880\pi t)$   $\Rightarrow$  [LPF][HPF][BPF][none].  
(e)  $h(t) = \frac{\sin(40\pi t)}{\pi t} - \frac{\sin(440\pi t)}{\pi t} + \delta(t)$   $\Rightarrow$  [LPF][HPF][BPF][none].  
(f)  $h(t) = \frac{\sin(4\pi t)}{\pi t} + 2\cos(6\pi t)\frac{\sin(2\pi t)}{\pi t}$   $\Rightarrow$  [LPF][HPF][BPF][none].  
(g)  $h(t) = \delta(t) - \frac{\sin(300\pi t)}{\pi t}$   $\Rightarrow$  [LPF][HPF]BPF][none].  
(h)  $h(t) = \int_{-\infty}^{\infty} \left(\delta(\tau) - \frac{\sin(16\pi\tau)}{\pi \tau}\right) \left(\frac{\sin(300\pi(t-\tau))}{\pi(t-\tau)}\right) d\tau$   $\Rightarrow$  [LPF][HPF][BPF][none].

**PROBLEM 4.** Shown on the left are impulse responses of eight different LTI filters, labeled A through H. (The impulse responses are all zero before t = 0 and after t = 20.) Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding impulse response by writing a letter (A through H) in each answer box.



**PROBLEM 5.** Consider an LTI system whose impulse response is:

$$h(t) = e^{-(t+1)}u(t+1) - e^{-(t-1)}u(t-1),$$

as sketched below:



(a) Suppose that the input to this system is a sinusoid of the form  $x(t) = \cos(2\pi f_0 t)$ . Specify *three* different values for the frequency  $f_0$  that will result in an output that is zero, i.e. y(t) = 0 for all t:

$$f_0 \in \{ \begin{array}{c|c} 0.5 \\ 0.5 \end{array} | \text{Hz}, \begin{array}{c|c} 1 \\ 1 \\ 1.5 \end{array} | \text{Hz} \}.$$
$$H(j\omega) = \frac{1}{1+j\omega} (e^{j\omega} - e^{-j\omega}) = \frac{2j\sin(\omega)}{1+j\omega}$$

 $H(j\omega)$  is zero when its numerator is zero

- $\Rightarrow$  when  $\omega = m\pi$  for any integer m
- $\Rightarrow \qquad \text{when } f = \frac{m}{2} \text{ for any integer } m$