QuIz 1

School of Electrical and Computer Engineering
 Georgia Institute of Technology

February 19, 2015

Name: \qquad

1. The quiz is closed book, except for one 2-sided sheet of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1. Consider the signal $x(t)$ shown below:

(a) In the space below, sketch the impulse response $h(t)$ of a filter that is matched to $x(t)$:

(b) The signal $y(t)$ that is shown below:

can be written in terms of $x(t)$ at the top of the page according to: $y(t)=x(t)+A x(B t+C)$,
where:

and

(c) The autocorrelation function $R_{x x}(t)$ for $x(t)$ achieves a maximum value of $R_{x x}\left(t_{\text {max }}\right)=$ \square at time $t_{\text {max }}=\square$.
(d) The convolution of $x(t)$ with itself is nonzero only for time between $t_{\text {start }}=\square$ and

$$
t_{\text {stop }}=\square
$$

(e) Evaluate the integral $\int_{-\infty}^{\infty} x(t) \delta(t-1 / 4) \sin (\pi t) d t=\square$.

PROBLEM 2. Consider the periodic signal shown below:

(a) The fundamental period of $x(t)$ is $T_{0}=\square$ seconds.
(b) The zeroth coefficient in the Fourier series $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k 2 \pi t / T_{0}}$ is $a_{0}=$ \square
(c) Suppose that this periodic signal $x(t)$ is passed through an ideal high-pass filter with cutoff frequency of $40 \pi \mathrm{rad} / \mathrm{s}$, as shown below:

Carefully sketch the output signal $y(t)$ after the high-pass filter, for time $-0.01<t<0.09$:

(d) Instead, suppose that $x(t)$ is passed through an ideal band-pass filter that only passes frequencies between ω_{1} and $2 \omega_{1}$, as shown below:

If the output is a single sinusoid, of the form say $z(t)=A \cos \left(2 \pi f_{c} t+\theta\right)$, then it must be that the filter parameter satisfies:

and further it must be that $f_{c}=$
 and $A=$

PROBLEM 3. For each impulse response given below, specify whether it is the impulse response of a low-pass filter (LPF), high-pass filter (HPF), bandpass filter (BPF), or none of the above (indicating your answer by circling one of the four options):
(a) $\quad h(t)=\frac{\sin (40 \pi t)}{\pi t}$

$$
\Rightarrow \quad[\text { LPF }][\text { HPF }][\text { BPF }][\text { none }] .
$$

(b) $h(t)=\frac{\sin (880 \pi t)}{\pi t} * \frac{\sin (440 \pi t)}{\pi t}$ (convolution) $\quad \Rightarrow \quad[\mathrm{LPF}][\mathrm{HPF}][$ BPF $][$ none $]$.
(c) $h(t)=\frac{\sin (880 \pi t)}{\pi t}-\frac{\sin (440 \pi t)}{\pi t} \quad \Rightarrow \quad[$ LPF $][$ HPF $][$ BPF $][$ none $]$.
(d) $h(t)=\frac{\sin (40 \pi t)}{\pi t} \cos (880 \pi t) \quad \Rightarrow \quad[\mathrm{LPF}][\mathrm{HPF}][$ BPF $][$ none $]$.
(e) $h(t)=\frac{\sin (40 \pi t)}{\pi t}-\frac{\sin (440 \pi t)}{\pi t}+\delta(t) \quad \Rightarrow \quad[$ LPF $][$ HPF $][$ BPF $][$ none $]$.
(f) $\quad h(t)=\frac{\sin (4 \pi t)}{\pi t}+2 \cos (6 \pi t) \frac{\sin (2 \pi t)}{\pi t} \quad \Rightarrow \quad[$ LPF $][$ HPF $][$ BPF $][$ none $]$.
(g) $h(t)=\delta(t)-\frac{\sin (300 \pi t)}{\pi t}$
$\Rightarrow \quad[\mathrm{LPF}][\mathrm{HPF}][$ BPF $][$ none $]$.
(h) $\quad h(t)=\int_{-\infty}^{\infty}\left(\delta(\tau)-\frac{\sin (16 \pi \tau)}{\pi \tau}\right)\left(\frac{\sin (300 \pi(t-\tau))}{\pi(t-\tau)}\right) \mathrm{d} \tau \Rightarrow[$ LPF $][$ HPF $][$ BPF $][$ none $]$.

PROBLEM 4. Shown on the left are impulse responses of eight different LTI filters, labeled A through H . (The impulse responses are all zero before $t=0$ and after $t=20$.)
Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magntiude response to its corresponding impulse response by writing a letter (A through H) in each answer box.

PROBLEM 5. Consider an LTI system whose impulse response is:

$$
h(t)=e^{-(t+1)} u(t+1)-e^{-(t-1)} u(t-1),
$$

as sketched below:

(a) Suppose that the input to this system is a sinusoid of the form $x(t)=\cos \left(2 \pi f_{0} t\right)$. Specify three different values for the frequency f_{0} that will result in an output that is zero, i.e. $y(t)=0$ for all t :

ECE 3084

QuIz 1

School of Electrical and Computer Engineering
Georgia Institute of Technology
February 19, 2015

Name: \qquad

1. The quiz is closed book, except for one 2-sided sheet of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1. Consider the signal $x(t)$ shown below:

(a) In the space below, sketch the impulse response $h(t)$ of a filter that is matched to $x(t)$:

(b) The signal $y(t)$ that is shown below:

can be written in terms of $x(t)$ at the top of the page according to: $y(t)=x(t)+A x(B t+C)$,
where: $\quad A=-1 / 2, \quad B=\square-2, \quad$ and $\quad C=\quad 2$:
(c) The autocorrelation function $R_{x x}(t)$ for $x(t)$ achieves a maximum value of $R_{x x}\left(t_{\max }\right)=5 \quad$ at time $t_{\max }=0$.
(d) The convolution of $x(t)$ with itself is nonzero only for time between $t_{\text {start }}=0$ and

$$
t_{\text {stop }}=4
$$

(e) Evaluate the integral $\int_{-\infty}^{\infty} x(t) \delta(t-1 / 4) \sin (\pi t) d t=\sqrt{2}$.

PROBLEM 2. Consider the periodic signal shown below:

(a) The fundamental period of $x(t)$ is $T_{0}=0.03$ seconds.
(b) The zeroth coefficient in the Fourier series $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k 2 \pi t / T_{0}}$ is $a_{0}=1$
(c) Suppose that this periodic signal $x(t)$ is passed through an ideal high-pass filter with cutoff frequency of $40 \pi \mathrm{rad} / \mathrm{s}$, as shown below:

Carefully sketch the output signal $y(t)$ after the high-pass filter, for time $-0.01<t<0.09$:

(d) Instead, suppose that $x(t)$ is passed through an ideal band-pass filter that only passes frequencies between ω_{1} and $2 \omega_{1}$, as shown below:

If the output is a single sinusoid, of the form say $z(t)=A \cos \left(2 \pi f_{c} t+\theta\right)$, then it must be that the filter parameter satisfies:

There are 2 solutions: $\frac{100 \pi}{3}<\omega_{1}<\frac{200 \pi}{3}$, or $\frac{200 \pi}{3}<\omega_{1}<100 \pi$,
(The 1st solution extracts the 1st harmonic, the 2nd solution extracts the 2nd harmonic.)

$$
\text { and further it must be that } f_{c}=\frac{1}{0.03}, \theta=0 .
$$

PROBLEM 3. For each impulse response given below, specify whether it is the impulse response of a low-pass filter (LPF), high-pass filter (HPF), bandpass filter (BPF), or none of the above (indicating your answer by circling one of the four options):
(a) $\quad h(t)=\frac{\sin (40 \pi t)}{\pi t}$ $\Rightarrow \quad$ LPF HPF][BPF][none].
(b) $h(t)=\frac{\sin (880 \pi t)}{\pi t} * \frac{\sin (440 \pi t)}{\pi t}$ (convolution) $\quad \Rightarrow \quad$ LPF HPF][BPF][none].
(c) $h(t)=\frac{\sin (880 \pi t)}{\pi t}-\frac{\sin (440 \pi t)}{\pi t} \quad \Rightarrow \quad[$ LPF $][$ HPF BPF [none].
(d) $\quad h(t)=\frac{\sin (40 \pi t)}{\pi t} \cos (880 \pi t)$
$\Rightarrow \quad[\mathrm{LPF}][\mathrm{HPF}$ BPF none $]$.
(e) $h(t)=\frac{\sin (40 \pi t)}{\pi t}-\frac{\sin (440 \pi t)}{\pi t}+\delta(t) \quad \Rightarrow \quad[\mathrm{LPF}][\mathrm{HPF}][$ BPF]none
(f) $h(t)=\frac{\sin (4 \pi t)}{\pi t}+2 \cos (6 \pi t) \frac{\sin (2 \pi t)}{\pi t} \quad \Rightarrow \quad$ LPF [HPF][BPF][none].
(g) $h(t)=\delta(t)-\frac{\sin (300 \pi t)}{\pi t}$
$\Rightarrow \quad[$ LPF $]$ HPF BPF $][$ none $]$.
(h) $h(t)=\int_{-\infty}^{\infty}\left(\delta(\tau)-\frac{\sin (16 \pi \tau)}{\pi \tau}\right)\left(\frac{\sin (300 \pi(t-\tau))}{\pi(t-\tau)}\right) \mathrm{d} \tau \quad \Rightarrow \quad[$ LPF $][$ HPF BPF none $]$.

PROBLEM 4. Shown on the left are impulse responses of eight different LTI filters, labeled A through H . (The impulse responses are all zero before $t=0$ and after $t=20$.)
Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magntiude response to its corresponding impulse response by writing a letter (A through H) in each answer box.

PROBLEM 5. Consider an LTI system whose impulse response is:

$$
h(t)=e^{-(t+1)} u(t+1)-e^{-(t-1)} u(t-1),
$$

as sketched below:

(a) Suppose that the input to this system is a sinusoid of the form $x(t)=\cos \left(2 \pi f_{0} t\right)$. Specify three different values for the frequency f_{0} that will result in an output that is zero, i.e. $y(t)=0$ for all t :

$H(j \omega)=\frac{1}{1+j \omega}\left(e^{j \omega}-e^{-j \omega}\right)=\frac{2 j \sin (\omega)}{1+j \omega}$
$H(j \omega)$ is zero when its numerator is zero
$\Rightarrow \quad$ when $\omega=m \pi$ for any integer m
$\Rightarrow \quad$ when $f=\frac{m}{2}$ for any integer m

