GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL \& COMPUTER ENGINEERING QUIZ \#1

DATE: 12-Feb-14

NAME: \qquad

STUDENT \#: \qquad

- Write your name on the front page ONLY. Do not unstaple the test. You should have an additional sheet with Fourier transform tables.
- Calculators are permitted, but are to be used only for calculations, not to store notes, etc. No laptops, phones, or other electronic devices are allowed. Keep the desks clear of all backpacks, books, etc.
- This is a closed book exam. However, one page ($8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$) of HAND-WRITTEN notes is permitted; it is OK to write on both sides.
- Unless stated otherwise, justify your reasoning clearly to receive any partial credit.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Circle your answers, or write them in the boxes provided. If space is needed for scratch work, use the backs of previous pages.
- The room is small for the number of students in this section. BE CAREFUL TO NOT LET YOUR EYES WANDER. Any sort of communication with your fellow students during this exam is strictly forbidden. Any attempt to read off of your neighbor's exam will result in unpleasant disciplinary action.

Please sign the following statement: One or more students will be taking a makeup quiz, and I will not discuss the contents of this quiz with anyone until the solutions are posted. I understand that if I do, it is a violation of the student honor code.

Signature: \qquad

Problem	Value	Score
1	20	
2	20	
3	20	
4	20	
5	20	

Problem Q1.1:

(5 pts each) Your friend gives you four black boxes, each with a single input and a single output, and asks for your help to determine whether or not they are LTI systems. You tell your friend that the best you can do is to test the systems with a few inputs and try to identify which ones are definitely NOT LTI systems. Given the two inputs and corresponding two outputs for each of the four systems, classify each system as one of the following:
(A) Possibly LTI (linear and time-invariant)
(B) NOT LINEAR but possibly time-invariant
(C) NOT TIME INVARIANT but possibly linear
(D) NEITHER LINEAR NOR TIME INVARIANT
(a) System \# 1

Input	Output
$x_{1}(t)=u(t)$	$y_{1}(t)=2 e^{-2(t-1)} u(t-1)$
$x_{2}(t)=2 u(t-10)$	$y_{2}(t)=4 e^{-2(t-12)} u(t-12)$

Circle One: A B C D
(b) System \# 2

Input	Output
$x_{1}(t)=u(t)$	$y_{1}(t)=10[u(t-5)-u(t-6)]$
$x_{2}(t)=2 u(t-10)$	$y_{2}(t)=20[u(t-15)-u(t-16)]$

Circle One: A B C D
(c) System \# 3

Input	Output
$x_{1}(t)=\cos (5 t)$	$y_{1}(t)=5 \sin (5 t)$
$x_{2}(t)=\cos (10 t)$	$y_{2}(t)=2 \cos (10 t)$

Circle One: A B C D
(d) System \# 4

Input	Output
$x_{1}(t)=\cos (5 t)$	$y_{1}(t)=20 \cos (5 t)+\sin (10 t)$
$x_{2}(t)=\cos (10 t)$	$y_{2}(t)=10 \sin (10 t)+\cos (20 t)$

Circle One: A B C D

Problem Q1.2:

(5 pts each) The four parts of this problem are unrelated to each other.
(a) Simplify the expression $\left\{t^{2}[u(t+1) \times \delta(t-2)]\right\} * u(t-3)=$
(b) Simplify the expression $\int_{-\infty}^{t} \cos (0.5 \pi \tau) \sum_{k=0}^{3} \delta(\tau-k) d \tau=$
(c) Find $X(j \omega)$, the Fourier transform of $x(t)=4 e^{-(t-1)} u(t-1) \cos (10 t)$.
(d) Find $x(t)$, the inverse Fourier transform of $X(j \omega)=1-[u(\omega+5)-u(\omega-5)]$. (Note that this is a perfect high pass filter with $\omega_{c}=5$.)

Problem Q1.3:

(20 pts) Find and accurately sketch $y(t)=x(t) * h(t)$ where $x(t)=(1-t))[u(t)-u(t-2)]$ and $h(t)=u(t-1)-u(t-7)$. For full credit (and maximum partial credit), you need to find equations for $y(t)$ in each region as well as include a plot of $y(t)$ showing its correct shape with correct horizontal and vertical axis labels. Intermediate plots are also strongly recommended. You must show your work to get full credit. Hint: If you find yourself doing a lot of algebra, STOP! It isn't necessary.

Problem Q1.4:

Let $x_{a}(t)$ be the half-wave rectified sine wave shown below with period T_{0} and Fourier series coefficients $a_{1}=-j / 4, a_{-1}=+j / 4$, and $a_{k}=\frac{1+e^{-j \pi k}}{2 \pi\left(1-k^{2}\right)}$ for all other k.

(a) (5 pts) Determine which, if any, Fourier coefficients of $x_{a}(t)$ are zero. Hint: $e^{j \pi k}=-1^{k}$.
(b) (10 pts) Use the appropriate property of Fourier series to find the the Fourier series coefficients b_{k} for the shifted signal $x_{b}(t)=x_{a}\left(t-T_{0} / 2\right)$. Don't forget about the $k= \pm 1$ terms. For what values of k are the b_{k} equal to the a_{k} ?
(c) (5 pts) Now let $x_{c}(t)=x_{a}(t)-x_{b}(t)$. Find the Fourier coefficients c_{k} of $x_{c}(t)$. Be sure to simplify your answer as much as possible. Now which coefficients are non-zero? Why?

Problem Q1.5:

Consider the general LTI system shown below with impulse response $h(t)$, frequency response $H(j \omega)$, input $x(t)$ and output $y(t)$. The impulse response is $h(t)=\frac{\sin (2 t)}{\pi t} \times \cos (10 t)$.

(a) (10 pts) Find $H(j \omega)$, the frequency response of the system, and sketch it. Make sure that the horizontal and vertical axes are correctly labeled, and that it is clear where $H(j \omega)$ is zero (if anywhere).
(b) (10 pts) Find the output $y(t)$ for $x(t)=5 \cos (t)+10 \cos (9 t+\pi / 4)-2 \delta(t-3)$.

GEORGIA INSTITUTE OF TECHNOLOGY

DATE: 12-Feb-14
NAME: $\frac{\text { Solutions }}{\text { LAST, }}$

STUDENT \#:
COURSE: ECE 3084A (Prof. Michaels)

- Write your name on the front page ONLY. Do not unstaple the test. You should have an additional sheet with Fourier transform tables.
- Calculators are permitted, but are to be used only for calculations, not to store notes, etc. No laptops, phones, or other electronic devices are allowed. Keep the desks clear of all backpacks, books, etc.
- This is a closed book exam. However, one page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes is permitted; it is OK to write on both sides.
- Unless stated otherwise, justify your reasoning clearly to receive any partial credit.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Circle your answers, or write them in the boxes provided. If space is needed for scratch work, use the backs of previous pages.
- The room is small for the number of students in this section. BE CAREFUL TO NOT LET YOUR EYES WANDER. Any sort of communication with your fellow students during this exam is strictly forbidden. Any attempt to read off of your neighbor's exam will result in unpleasant disciplinary action.

Please sign the following statement: One or more students will be taking a makeup quiz, and I will not discuss the contents of this quiz with anyone until the solutions are posted. I understand that if I do, it is a violation of the student honor code.

Signature:

Problem	Value	Score
1	20	
2	20	
3	20	
4	20	
5	20	

Problem Q1.1:

(5 pts each) Your friend gives you four black boxes, each with a single input and a single output, and asks for your help to determine whether or not they are LTI systems: You tell your friend that the best you can do is to test the systems with a few inputs and try to identify which ones are definitely NOT LTI systems. Given the two inputs and corresponding two outputs for each of the four systems, classify each system as one of the following:
(A) Possibly LTI (linear and time-invariant)
(B) NOT LINEAR but possibly time-invariant
(C) NOT TIME INVARIANT but possibly linear
(D) NEITHER LINEAR NOR TIME INVARIANT
(a) System \# 1

Input	Output
$x_{1}(t)=u(t)$	$y_{1}(t)=2 e^{-2(t-1)} u(t-1)$
$x_{2}(t)=2 u(t-10)$	$y_{2}(t)=4 e^{-2(t-12)} u(t-12)$

Circle One:
A B
(C) D

$$
\begin{aligned}
& \text { If } C T I_{1},-2(t-11) \\
& y_{2}(t)=4 e^{-11)} \\
& \text { Not time-invariant }
\end{aligned}
$$

(b) System \# 2

Input	Output
$x_{1}(t)=u(t)$	$y_{1}(t)=10[u(t-5)-u(t-6)]$
$x_{2}(t)=2 u(t-10)$	$y_{2}(t)=20[u(t-15)-u(t-16)]$

Circle One:
(A)
B
CD

If LTI,
$y_{2}(t)=20[u(t-15)-u(t-16)]$
could be LTI
(c) System \# 3

Input	Output
$x_{1}(t)=\cos (5 t)$	$y_{1}(t)=5 \sin (5 t)$
$x_{2}(t)=\cos (10 t)$	$y_{2}(t)=2 \cos (10 t)$

Sinusoid in \rightarrow Sinusoid ont could be LTI

Circle One: (A) B C D
(d) System \# 4

Input	Output
$x_{1}(t)=\cos (5 t)$	$y_{1}(t)=20 \cos (5 t)+\sin (10 t)$
$x_{2}(t)=\cos (10 t)$	$y_{2}(t)=10 \sin (10 t)+\cos (20 t)$

Circle One: A (B) C D
Sinusoid $\underset{\text { out }}{ } 2$ sinusoids
Not linear, could be Time-invariant

Problem Q1.2:
(5 pts each) The four parts of this problem are unrelated to each other.
(a) Simplify the expression $\left\{t^{2}[u(t+1) \times \delta(t-2)]\right\} * u(t-3)=\left\{t^{2} \delta(t-2)\right\} * u(t-3)$

$$
\begin{aligned}
& =4 \delta(t-2) * u(t-3) \\
& =4 u(t-5)
\end{aligned}
$$

(b) Simplify the expression $\int_{-\infty}^{t} \cos (0.5 \pi \tau) \sum_{k=0}^{3} \delta(\tau-k) d \tau=\int_{-\infty}^{t} \cos \left(\frac{\pi}{2} \tau\right)[\delta(\tau)+\delta(\tau-1)+\delta(\tau-2)+\delta(\tau-3)] d \tau$

$$
\begin{aligned}
& =\int_{-\infty}^{t}[1 \delta(\tau)+0 \delta(\tau-1)-1 \delta(\tau-2)+0 \delta(\tau-3)] d \tau \\
& =u(t)-u(t-2)
\end{aligned}
$$

(c) Find $X(j \omega)$, the Fourier transform of $x(t)=4 e^{-(t-1)} u(t-1) \cos (10 t)=\tilde{x}(t) \cos (10 t)$

$$
\begin{aligned}
& \tilde{x}(j \omega)=\frac{4 e^{-j \omega}}{1+j \omega} \quad \text { use modulation property } \\
& X(j \omega)=\frac{2 e^{-j(\omega+10)}}{1+j(\omega+10)}+\frac{2 e^{-j(\omega-10)}}{1+j(\omega-10)}
\end{aligned}
$$

(d) Find $x(t)$, the inverse Fourier transform of $X(j \omega)=1-[u(\omega+5)-u(\omega-5)]$: (Note that this is a perfect high pass filter with $\omega_{c}=5$.)

$$
x(t)=\delta(t)-\frac{\sin (5 t)}{\pi t}
$$

Problem Q1.3:
(20 pts) Find and accurately sketch $y(t)=x(t) * h(t)$ where $x(t)=(1-t))[u(t)-u(t-2)]$ and $h(t)=u(t-1)-u(t-7)$. For full credit (and maximum partial credit), you need to find equations for $y(t)$ in each region as well as include a plot of $y(t)$ showing its correct shape with correct horizontal and vertical axis labels. Intermediate plots are also strongly recommended. You must show your work to get full credit. Hint: If you find yourself doing a lot of algebra, STOP! It isn't necessary. Flip $h(t) \quad y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$

Region I, $t<1, y(t)=0$

$$
\begin{aligned}
& \text { Region I. } t<1, \quad \begin{aligned}
\text { Region II, } 1 \leqslant t<3 \text { (partial overlap) } \\
\begin{aligned}
y(t)=\int_{0}^{t-1}(1-\tau) d \tau=\left.\left(\tau-\frac{\tau^{2}}{2}\right)\right|_{0} ^{t-1}=(t-1)-\frac{(t-1)^{2}}{2} & =-\frac{t^{2}}{2}+2 t-\frac{3}{2} \\
& =-\frac{1}{2}(t-1)(t-3)
\end{aligned}
\end{aligned} . \begin{array}{l}
\text { (full overlap) }
\end{array}
\end{aligned}
$$

Region III. $3 \leq t<7$ (full overlap)

$$
\begin{aligned}
& \text { on III } 3 \leq t<7 \text { (full overlap) } \\
& y(t)=0 \text { (positive \& negative pieces of } x(\tau) \text { cancel out) }
\end{aligned}
$$

Region IV, $7 \leq t<9$ (partial overlap)

$$
\begin{aligned}
& \text { Region IV, } 7 \leq t<9 \quad \text { (partial overlap) } \\
& \begin{aligned}
y(t)=\int_{t-7}^{2}(1-\tau) d \tau=\left.\left(\tau-\frac{\tau^{2}}{2}\right)\right|_{t-7} ^{2}=2-\frac{2^{2}}{4}-(t-7)+\frac{(t-7)^{2}}{2} & =\frac{(t-7)^{2}}{2}-(t-7) \\
& =\frac{t^{2}}{2}-8 t-\frac{63}{2} \\
& =\frac{1}{2}(t-7)(t-9)
\end{aligned}
\end{aligned}
$$

Region I. $t \geq 9, y(t)=0$

Problem Q1.4:
Let $x_{a}(t)$ be the half-wave rectified sine wave shown below with period T_{0} and Fourier series coefficients $a_{1}=-j / 4, a_{-1}=+j / 4$, and $a_{k}=\frac{1+e^{-j \pi k}}{2 \pi\left(1-k^{2}\right)}$ for all other k.

(a) (5 pts) Determine which, if any, Fourier coefficients of $x_{a}(t)$ are zero. Hint: $e^{j \pi k}=(-1)^{k}=e^{-j \pi /}$

$$
\begin{aligned}
& a_{0} \neq 0 \\
& a_{ \pm 1} \neq 0 \\
& \text { a even }^{\text {en }_{k}}=\frac{2}{2 \pi\left(1-e^{2}\right)} \neq 0 \\
& \text { values of } k \text { are the } b_{k} \text { equal to the } a_{k} \text { ? } \\
& b_{k}=a_{k} e^{-j \frac{j \pi k}{T_{0}} \cdot \frac{T_{0}}{2}}=a_{k} e^{-j \pi k} \\
& \begin{array}{ll}
b_{0}=a_{0} \\
b_{1}=-a_{1}=\frac{j}{4} & b_{k}=a_{k}=a_{k} \\
b_{k}
\end{array} \\
& b_{-1}=-a_{-1}=-\frac{j}{4} \quad b_{\substack{ \\
k \neq \pm 1}}=0
\end{aligned}
$$

\square
(b) (10 pts) Use the appropriate property of Fourier series to find the the Fourier series coefficients b_{k} for the shifted signal $x_{b}(t)=x_{a}\left(t-T_{0} / 2\right)$. Don't forget about the $k= \pm 1$ terms. For what
all $b_{k}=a_{k}$ except

$$
b_{ \pm 1}=-a_{ \pm 1}
$$

(c) (5 pts) Now let $x_{c}(t)=x_{a}(t)-x_{b}(t)$. Find the Fourier coefficients c_{k} of $x_{c}(t)$. Be sure to simplify your answer as much as possible. Now which coefficients are non-zero? Why?

$$
\left.\begin{array}{rl}
c_{k} & =a_{k}-b_{k} \quad \text { All } c_{k}=0 \text { except } k= \pm 1 \\
c_{1} & =-\frac{j}{4}-\frac{j}{4}=-\frac{j}{2} \\
c_{-1} & =\frac{j}{4}+\frac{j}{4}=\frac{j}{2}
\end{array}\right\} \begin{aligned}
& \text { these are the only non-zero } \\
& \text { coefficients because }
\end{aligned} x_{c}(t)=-\frac{j}{2} e^{j \omega_{0} t}+\frac{d}{2} e^{-j \omega_{0} t} \begin{aligned}
& x_{c}(t)=\sin \left(\omega_{0} t\right) \\
&=\frac{e^{j \omega_{0} t}-e^{-j \omega_{0} t}}{2 j}=\sin \left(\omega_{0} t\right)
\end{aligned}
$$

Problem Q1.5:
Consider the general LTI system shown below with impulse response $h(t)$, frequency response $H(j \omega)$, input $x(t)$ and output $y(t)$. The impulse response is $h(t)=\frac{\sin (2 t)}{\pi t} \times \cos (10 t)$.

(a) (10 pts) Find $H(j \omega)$, the frequency response of the system, and sketch it. Make sure that the horizontal and vertical axes are correctly labeled, and that it is clear where $H(j \omega)$ is zero (if anywhere).

$$
h(t)=\tilde{h}(t) \cos (10 t)
$$

$$
H(j \omega)=\frac{1}{2} \tilde{H}(\omega+10)+\frac{1}{2} \tilde{H}(\omega-10)
$$

$$
\tilde{H}(j \omega)=u(\omega+2)-u(\omega-2)
$$

$$
\begin{gathered}
\tilde{H}(j \omega)=u(\omega+2)-u(\omega-2) \\
H(j \omega)=\frac{1}{2}[u(\omega+12)-u(\omega+8)]+\frac{1}{2}[u(\omega-8)+u(\omega-12)]
\end{gathered}
$$

$$
\begin{aligned}
& \text { (b) (10 pts) Find the output } y(t) \text { for } x(t)=5 \cos (t)+10 \cos (9 t+\pi / 4)-2 \delta(t-3) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& y(t)=5 \cos (9 t+\pi / 4)-\frac{2 \sin (2(t-3))}{\pi(t-3)} \cos (10(t-3))
\end{aligned}
$$

