School of Electrical and Computer Engineering
Georgia Institute of Technology
October 4, 2018

Name: \qquad

1. The quiz is closed book, closed notes, except for one 2 -sided sheet of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. No calculators.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1. (20 points)
Consider the signal $s(t)=\left\{\begin{array}{ll}1, & -1<t<0 \\ 1-t^{2}, & 0<t<1 \\ 0, & |t|>1\end{array}, ~\right.$

(a) Evaluate the integral $\int_{-\infty}^{\infty} s(t) \delta(1-2 t) d t=\square$.
(b) The signal $s(t)$ has energy $E=\square$, and power $P=\square$.

(d) Consider a system whose output $y(t)$ is related to its input $x(t)$ by $y(t)=x(t)+s(t)$. In other words, the system adds the above $s(t)$ to its input. This system is (circle all that apply):
[causal][memoryless][stable][linear][time invariant][LTI][invertible].

PROBLEM 2. (20 points)
Consider the signal $x(t)$ shown at the top:
The remaining signals are labeled A through L .
The time scales are identical for all plots.
The scale of the y-axis is not specified.
Match each equation below to its plot. Identify your answers by writing a letter from $\{\mathrm{A}, \mathrm{B}, \ldots \mathrm{L}\}$ into each answer box.
(a)
 $y(t)=x(t) * x(t)$, the convolution of $x(t)$ with itself.
(b) Explain your reasoning.
(c) $\square R_{x x}(t)=x(t) * x(-t)$.
(d) Explain your reasoning.

PROBLEM 3. (20 points)
Consider the signals $x(t)$ and $h(t)$ shown below:

In the space below, carefully sketch the convolution $y(t)=x(t) * h(t)$, carefully labeling important times and amplitudes:

$$
y(t)
$$

PROBLEM 4. (20 points)
Consider an LTI system with impulse response $h(t)=u(t)-u(t-T)$, a rectangle whose width T is unspecified:

The two parts below consider different input signals.
(a) Sketch the filter output in response to the input signal $x(t)=h(-t)$, carefully labeling both axes in terms of the unknown T :
(b) There are many values of T for which an input of the form $x(t)=3084+\sum_{k=7}^{3084} \cos (0.1 k \pi t)$ results in a constant output. Name any three:

$$
T=\square, \quad \text { or } \quad T=\square, \quad \text { or } \quad T=\square
$$

PROBLEM 5. (20 points)
Suppose a sinusoidal signal $x(t)=\cos \left(2 \pi f_{0} t\right)$ with some unspecified frequency $f_{0}>0$ is fed as an input into an LTI system whose impulse response is $h(t)=\left(\frac{\sin (16 \pi t)}{\pi t}\right)^{2}$, as shown here: $\quad x(t)=\xrightarrow{\cos \left(2 \pi f_{0} t\right)} \longrightarrow \mathrm{LTI} \longrightarrow(t)$
(a) Evaluated at time 0 , the impulse response is $h(0)=\square$.
(b) Specify all values of f_{0} (in Hz) for which the output is the zero signal, $y(t)=0$ for all time:

(c) If the output has the specific form $y(t)=\cos \left(2 \pi f_{0} t+\theta\right)$, then it must be that:

$$
f_{0}=\square \mathrm{Hz}, \quad \text { and } \quad \theta=\square \text { radians. }
$$

October 4, 2018

KEY

Name: \qquad

1. The quiz is closed book, closed notes, except for one 2 -sided sheet of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. No calculators.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL:	100	

PROBLEM 1. (20 points)
LEM 1. (20 points)
Consider the signal $s(t)=\left\{\begin{array}{ll}1, & -1<t<0 \\ \text { as shown here: } & 1-t^{2}, \\ 0, & |t|>1<1\end{array}, ~\right.$

(a) Evaluate the integral $\int_{-\infty}^{\infty} s(t) \delta(1-2 t) d t=\frac{3}{8}$.
(b) The signal $s(t)$ has energy $E=\frac{23}{15}$, and power $P=\square 0$
(c) The odd part of $s(t)$ is $s_{o}(t)=\left\{\begin{array}{rr}\frac{t^{2}}{2} \\ \hline \frac{-t^{2}}{2} \\ 0,\end{array}, \quad \begin{array}{r}-1<t<0 \\ 0<t<1 \\ |t|>1\end{array}\right.$.
(d) Consider a system whose output $y(t)$ is related to its input $x(t)$ by $y(t)=x(t)+s(t)$. In other words, the system adds the above $s(t)$ to its input. This system is (circle all that apply):

PROBLEM 2. (20 points)
Consider the signal $x(t)$ shown at the top:
The remaining signals are labeled A through L . The time scales are identical for all plots. The scale of the y-axis is not specified.

Match each equation below to its plot. Identify your answers by writing a letter from $\{\mathrm{A}, \mathrm{B}, \ldots \mathrm{L}\}$ into each answer box.
(a) \square $y(t)=x(t) * x(t)$, the convolution of $x(t)$ with itself.
(b) Explain your reasoning.

PROBLEM 3. (20 points)
Consider the signals $x(t)$ and $h(t)$ shown below:

In the space below, carefully sketch the convolution $y(t)=x(t) * h(t)$, carefully labeling important times and amplitudes:

PROBLEM 4. (20 points)
Consider an LTI system with impulse response $h(t)=u(t)-u(t-T)$, a rectangle whose width T is unspecified:

The two parts below consider different input signals.
(a) Sketch the filter output in response to the input signal $x(t)=h(-t)$, carefully labeling both axes in terms of the unknown T :

(b) There are many values of T for which an input of the form $x(t)=3084+\sum_{k=7}^{3084} \cos (0.1 k \pi t)$ results in a constant output. Name any three:

$$
T=\square, \quad \text { or } \quad T=\square, \quad \text { or } \quad T=\begin{aligned}
& 20 \\
& \hline
\end{aligned}
$$

PROBLEM 5. (20 points)
Suppose a sinusoidal signal $x(t)=\cos \left(2 \pi f_{0} t\right)$ with some unspecified frequency $f_{0}>0$ is fed as an input into an LTI system whose impulse response is $h(t)=\left(\frac{\sin (16 \pi t)}{\pi t}\right)^{2}$, as shown here: $\quad x(t)=\xrightarrow{\cos \left(2 \pi f_{0} t\right)} \longrightarrow \mathrm{LTI} \longrightarrow(t)$
(a) Evaluated at time 0 , the impulse response is $h(0)=16^{2}=256$
(b) Specify all values of f_{0} (in Hz) for which the output is the zero signal, $y(t)=0$ for all time:

$$
f_{0} \in\left|f_{0}\right|>16 \mathrm{~Hz}
$$

(c) If the output has the specific form $y(t)=\cos \left(2 \pi f_{0} t+\theta\right)$, then it must be that:

$$
f_{0}=\square \mathrm{Hz}, \quad \text { and } \quad \theta=\begin{aligned}
& 15 \\
& \text { radians. }
\end{aligned}
$$

