GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL \& COMPUTER ENGINEERING QUIZ \#1

DATE: 25-Sep-13
NAME: \qquad LAST, FIRST

STUDENT \#: \qquad

- Write your name on the front page ONLY. Do not unstaple the test. You should have an additional sheet with Fourier transform tables.
- No calculators, laptops, phones, or other electronic devices allowed. Keep the desks clear of all backpacks, books, etc.
- This is a closed book exam. However, one page $\left(8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}\right)$ of HAND-WRITTEN notes is permitted; it is OK to write on both sides.
- Unless stated otherwise, justify your reasoning clearly to receive any partial credit.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Circle your answers, or write them in the boxes provided. If space is needed for scratch work, use the backs of previous pages.
- The room is small for the number of students in this section. BE CAREFUL TO NOT LET YOUR EYES WANDER. Any sort of communication with your fellow students during this exam is strictly forbidden. Any attempt to read off of your neighbor's exam will result in unpleasant disciplinary action.
- Good luck!

Problem	Value	Score
1	20	
2	20	
3	20	
4	20	
5	20	

Problem Q1.1:

(5 pts each) Consider the four systems below for which the input/output relation is given for input $x(t)$ and output $y(t)$. Consider whether or not each system is linear, time-invariant, causal, or memoryless, and circle all that apply (if any). Circle "None" if the system does not have any of these properties.
(a)

$$
y(t)=\frac{1}{1+x(t+3)}
$$

Linear Time-Invariant Causal Memoryless None
(b)

$$
y(t)=(t+3) x(t-3)
$$

Linear Time-Invariant Causal Memoryless None
(c)

$$
y(t)=x(|t|)+|x(t)|
$$

Linear Time-Invariant Causal Memoryless None
(d)

$$
y(t)=x\left(\cos \left(t^{2}\right)\right)
$$

Linear Time-Invariant Causal Memoryless None

Problem Q1.2:

(5 pts each) The four parts of this problem are unrelated to each other.
(a) Simplify the expression $\int_{t}^{\infty} \tau[\delta(\tau+1)-\delta(\tau-3)] d \tau=$
(b) Simplify the expression $\frac{d}{d t}[\sin (3 \pi t / 4)[u(t)-u(t-2)]]=$
(c) Find $X(j \omega)$, the Fourier transform of $x(t)=10 \sin (5 t+\pi / 4)$.
(d) Find $x(t)$, the inverse Fourier transform of $X(j \omega)=\frac{j \omega}{5+j \omega}$.

Problem Q1.3:

(5 pts each) In the following graphs, $h(t)$ is the impulse response of an LTI system and $x(t)$ is the input; the output of the system is $y(t)$.

(a) At what times does the output $y(t)$ start and stop?

$$
\begin{aligned}
& t_{\text {start }}= \\
& t_{\text {stop }}=
\end{aligned}
$$

(b) What is the complete set of values of t for which $y(t)$ is exactly zero?
(c) Find $y(4)$.
(d) What is $y_{\text {max }}$, the largest positive value of $y(t)$, and at what time $t_{\text {max }}$ does it occur?

$$
\begin{aligned}
y_{\max } & = \\
t_{\max } & =
\end{aligned}
$$

Problem Q1.4:

(a) (5 pts) Consider a general periodic signal $x(t)$ with period T_{0} and Fourier series coefficients a_{k}. Show that the Fourier series coefficients b_{k} of the signal $y(t)=x(-t)$ are $b_{k}=a_{k}^{*}$.
(b) (5 pts) Now let $x(t)$ be the specific signal shown below with known Fourier series coefficients $a_{0}=0.25$ and $a_{k}=\frac{j(-1)^{k}}{2 \pi k}-\frac{1-(-1)^{k}}{2 \pi^{2} k^{2}}$ for $k \neq 0 ; w(t)$ is the triangular signal below $x(t)$.

Express $w(t)$ as a sum of delayed, flipped and scaled versions of $x(t)$.
(c) (10 pts) Use the results of parts (a) and (b) along with other properties of Fourier series to obtain c_{k}, the Fourier series coefficients of $w(t)$.

Problem Q1.5:

Consider the general LTI system shown below with impulse response $h(t)$, frequency response $H(j \omega)$, input $x(t)$ and output $y(t)$. Let $h(t)=e^{-(t+1)} u(t+1)-e^{-(t-1)} u(t-1)$.

(a) (5 pts) Show that $H(j \omega)=\frac{2 j \sin (\omega)}{1+j \omega}$.
(b) (10 pts) Find the output $y(t)$ for $x(t)=5 \cos (t)+10 \sin (2 \pi t)+3 \delta(t-2)$.
(c) (5 pts) Now consider an input $x(t)$ that is a completely general periodic signal with period T_{0}. Specify at least two specific values of T_{0} for which $y(t) \equiv 0$.

GEORGIA INSTITUTE OF TECHNOLOGY
 SCHOOL of ELECTRICAL \& COMPUTER ENGINEERING
 QUIZ \#1

DATE: 25-Sep-13

STUDENT \#:

- Write your name on the front page ONLY. Do not unstaple the test. You should have an additional sheet with Fourier transform tables.
- No calculators, laptops, phones, or other electronic devices allowed. Keep the desks clear of all backpacks, books, etc.
- This is a closed book exam. However, one page ($8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$) of HAND-WRITTEN notes is permitted; it is OK to write on both sides.
- Unless stated otherwise, justify your reasoning clearly to receive any partial credit.
- You must write your answer in the space provided on the exam paper itself. Only these answers will be graded. Circle your answers, or write them in the boxes provided. If space is needed for scratch work, use the backs of previous pages.
- The room is small for the number of students in this section. BE CAREFUL TO NOT LET YOUR EYES WANDER. Any sort of communication with your fellow students during this exam is strictly forbidden. Any attempt to read off of your neighbor's exam will result in unpleasant disciplinary action.
- Good luck!

Problem	Value	Score
1	20	
2	20	
3	20	
4	20	
5	20	

None of these systems are mem.ryless because they look into either the past or future.
Problem Q1.1:
(5 pts each) Consider the four systems below for which the input/output relation is given for input $x(t)$ and output $y(t)$. Consider whether or not each system is linear, time-invariant, causal, or memoryless, and circle all that apply (if any). Circle "None" if the system does not have any of these properties.
(a)

$$
y(t)=\frac{1}{1+x(t+3)}
$$

because of reciprocal
looks into the future
(b)

$$
y(t)=(t+3) x(t-3)
$$

(c)

$$
y(t)=x(|t|)+|x(t)|
$$

Linear

looks into the future

Problem Q1.2:
(5 pts each) The four parts of this problem are unrelated to each other.
(a) Simplify the expression $\int_{t}^{\infty} \tau[\delta(\tau+1)-\delta(\tau-3)] d \tau=\int_{t}^{\infty}[-\delta(\tau+1)-3 \delta(\tau-3)] d \tau$

$$
=-u(-(t+1))-3 u(-(t-3))=-4+u(t+1)+3 u(t+3)
$$

(b) Simplify the expression $\frac{d}{d t}[\sin (3 \pi t / 4)[u(t)-u(t-2)]]=$

$$
\begin{aligned}
& \sin \left(\frac{3 \pi t}{4}\right)[\delta(t)-\delta(t-2)]+\frac{3 \pi}{4} \cos \left(\frac{3 \pi t}{4}\right)[u(t)-u(t-2)] \\
& =+\delta(t-2)+\frac{3 \pi}{4} \cos \left(\frac{3 \pi}{4}\right)[u(t)-u(t-2)]
\end{aligned}
$$

(c) Find $X(j \omega)$, the Fourier transform of $x(t)=10 \sin (5 t+\pi / 4)$.

$$
\begin{aligned}
x(t) & =\frac{10}{2}\left[e^{j \pi / 4} e^{j 5 t}-e^{-j \pi / 4} e^{-j t}\right] \\
x(j \omega) & =-5 j \cdot 2 \pi\left[e^{j \pi / 4} \delta(\omega-5)-e^{-j / 4} \delta(\omega+5)\right] \\
& =10 \pi e^{j i \pi / 4} \delta(\omega-5)+10 \pi e^{j \pi / 4} \delta(\omega+5)
\end{aligned}
$$

(d) Find $x(t)$, the inverse Fourier transform of $X(j \omega)=\frac{j \omega}{5+j \omega}$.

$$
\begin{aligned}
x(t) & =\frac{d}{d t}\left[e^{-5 t} u(t)\right] \\
& =e^{-5 t} \delta(t)-5 e^{-5 t} u(t) \\
& =\delta(t)-5 e^{-5 t} u(t)
\end{aligned}
$$

Problem Q1.3:

(5 pts each) In the following graphs, $h(t)$ is the impulse response of an LTI system and $x(t)$ is the input; the output of the system is $y(t)$.

(a) At what times does the output $y(t)$ start and stop?

$$
\begin{aligned}
& t_{\text {start }}=3 \\
& t_{\text {stop }}=13
\end{aligned}
$$

(b) What is the complete set of values of t for which $y(t)$ is exactly zero?
$t \leq 3$
$t-1=6, \quad t=7$
$t \geq 13$
$t-7=2, t=9$
$7 \leq t \leq 9$
(c) Find y (4). The flipped $x(t-\tau)$ overlaps $h(t)$ from 2 to 3 . $y(4)=-\frac{1}{2}(2)=-1$
(d) What is $y_{\max }$, the largest positive value of $y(t)$, and at what time $t_{\max }$ does it occur?

$$
\begin{aligned}
& y_{\max }=1(2)=2 \\
& t_{\max }=11
\end{aligned}
$$

Max value occurs when $x(t-\mu)$ overlaps $h(t)$ from 4 to 6.

$$
t-7=4
$$

$$
t=11
$$

Problem Q1.4:
(a) (5 pts) Consider a general periodic signal $x(t)$ with period T_{0} and Fourier series coefficients a_{k}. Show that the Fourier series coefficients b_{k} of the signal $y(t)=x(-t)$ are $b_{k}=a_{k}^{*}$.

$$
\begin{aligned}
b_{k} & =\frac{1}{T_{0}} \int_{0}^{T_{0}} x(-t) e^{-j \omega_{0} k t} d t \quad \text { let } \\
& =\frac{1}{T_{0}} \int_{0}^{-T_{0}} x(Y) e^{+j^{1} \omega_{0} Q_{T}}(-d \tau) \\
& =\frac{1}{T_{0}} \int_{0}^{0} x(\gamma) e^{j \omega_{0} R T} d T
\end{aligned}
$$

(b) (5 pts) Now let $x(t)$ be the specific signal shown below with known Fourier series coefficients $a_{0}=0.25$ and $a_{k}=\frac{j(-1)^{k}}{2 \pi k}-\frac{1-(-1)^{k}}{2 \pi^{2} k^{2}}$ for $k \neq 0 ; w(t)$ is the triangular signal below $x(t)$.

$$
\begin{aligned}
\omega_{0} & =\frac{2 \pi}{T_{0}} \\
& =\pi
\end{aligned}
$$

Express $w(t)$ as a sum of delayed, flipped and scaled versions of $x(t)$.

$$
\begin{aligned}
& \text { Express } w(t) \text { as a sum of delayed, flipped and scaled versions of } x(t) \text {. } \\
& \omega(t)=x(t+1)+x(-(t+1)) \text { (other shifts are possible) }
\end{aligned}
$$

$$
\text { or } w(t)=x(t-1)+x(-(t-1))
$$

(c) (10 pts) Use the results of parts (a) and (b) along with other properties of Fourier series to obtain c_{k}, the Fourier series coefficients of $w(t)$.

$$
\begin{array}{rlrl}
c_{k} & =\left(a_{k}+a_{k}^{*}\right) e^{-j \omega_{0} k} & \text { time shift property } \\
& =2 \operatorname{Re}\left(a_{k}\right) e^{-j \pi k} & & \\
& =\frac{(-1)^{k}-1}{\pi^{2} k^{2}}(-1)^{k} & C_{0} & =a_{0}+a_{0}=2 a_{0} \\
& =\frac{1-(-1)^{k}}{\pi^{2} k^{2}} ; k \neq 0 & & =0.5
\end{array}
$$

Problem Q1.5:
Consider the general LTI system shown below with impulse response $h(t)$, frequency response $H(j \omega)$, input $x(t)$ and output $y(t)$. Let $h(t)=e^{-(t+1)} u(t+1)-e^{-(t-1)} u(t-1)$.

$$
\begin{aligned}
& \text { (a) (5 pts) Show that } H(j \omega)=\frac{2 j \sin (\omega)}{1+j \omega} \\
& H(j \omega)
\end{aligned} \begin{aligned}
1+j \omega & e^{j \omega}-\frac{1}{1+j \omega} e^{-j \omega} \\
& =\frac{2 j \sin (\omega)}{1+j \omega}
\end{aligned}
$$

(b) (10 pts) Find the output $y(t)$ for $x(t)=5 \cos (t)+10 \sin (2 \pi t)+3 \delta(t-2)$.

$$
H(j 2 \pi)=0
$$

$$
\begin{aligned}
& y(t)=5 \sqrt{2} \sin (1) \cos (t+\pi / 4) \\
& 3 e^{-(t-1)} u(t-1)-3 e^{-(t-3)} u(t-3)
\end{aligned}
$$

(c) (5 pts) Now consider an input $x(t)$ that is a completely general periodic signal with period T_{0}. Specify at least two specific values of T_{0} for which $y(t) \equiv 0$.

$$
y(t)=0 \text { if } H(j \omega)=0 \text { fr all harmonics of } x(t) \text {. }
$$

This happens if:

$$
\begin{aligned}
& \omega_{0}=n \pi \\
& \frac{2 \pi}{T_{0}}=n \pi \\
& T_{0}=\frac{2}{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Two values of } T_{0} \\
& \text { are } T_{0}=2 \text { and } T_{0}=1 \\
& \qquad(n=1) \\
& \qquad(n=2)
\end{aligned}
$$

