ECE 3084

FINAL EXAM

School of Electrical and Computer Engineering Georgia Institute of Technology May 3, 2017

Name: _____

- 1. The exam is closed book & notes, except for three 2-sided sheets of handwritten notes.
- 2. Silence your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	10	
2	15	
3	15	
4	10	
5	15	
6	10	
7	10	
8	15	
TOTAL:	100	

PROBLEM 1. (10 points)

Let
$$X(s) = \frac{(1 - e^{-s})^3}{s^2}$$
.

(a) In terms of r(t) = tu(t), the inverse Laplace transform of X(s) can be

written as:
$$x(t) = Ar(t) + Br(t-C) + Dr(t-E) + Fr(t-G),$$

where (*hint:* all answers are integers!):

$$A = \boxed{ } , B = \boxed{ } , C = \boxed{ } , D = \boxed{ } , E = \boxed{ } , F = \boxed{ } , G = \boxed{ }$$

(b) Provide a sketch of x(t) in the space below, *taking care to carefully label both axes*:

PROBLEM 2. (15 points)

Below are three systems with input x(t) and output y(t). Specify which properties they satisfy by writing a "Y" (for yes) or "N" (for no) into each answer box:

(a)	y(t) = 2 + x(t)	memoryless	causal	stable	linear	time-invariant	invertible
(b)	$y(t)=(\pi-e^{- t })x(t)$	memoryless	causal	stable	linear	time-invariant	invertible

PROBLEM 3. (15 points)

Find an equation for the convolution of $x(t) = \left(\frac{\sin(8\pi t)}{\pi t}\right)^2$ with $h(t) = \cos(2\pi t)$, simplified as much as possible (no integrals!):

$$y(t) = x(t) * h(t) =$$

PROBLEM 4. (10 points)

(a)	In "I & Q", the "I" stands for	, and "Q" stands for	
(1)	*		

(b) In twelve words or less, what is "pulse compression"?

Explain!

PROBLEM 5. (10 points)

You are an engineer charged with constructing three bandpass filters having the following frequency response:

^{1.} The ideal LPF rejects all frequencies *above* its ω_c , while the ideal HPF rejects all frequencies *below* its ω_c .

PROBLEM 6. (10 points)

Shown below is a circuit diagram of a [LPF][BPF][HPF] (circle one), with a L = 0.2 H inductor and a $C = 5/\pi^2 \approx 0.507$ F capacitor:

Also shown above is the step response. From this, estimate as close as possible the resistor value:

PROBLEM 7. (10 points)

A sinc function $s(t) = \frac{\sin(12\pi t)}{(\pi t)}$ is passed through an ideal high-pass filter with cutoff 8π (its frequency response is $H(j\omega) = 0$ for $|\omega| < 8\pi$, and $H(j\omega) = 1$ for $|\omega| > 8\pi$). The HPF output x(t) is then passed as an input into a back-to-back connection of an ideal analog-to-digital converter (ADC) followed by an ideal digital-to-analog (DAC) converter, both with sampling rate $f_s = 5$ Hz:

Find an equation for the DAC output y(t), simplified as much as possible:

PROBLEM 8. (15 points)

Consider the control system shown below:

(a) Sketch the pole-zero plot of the closed-loop system H(s) = Y(s)/R(s) when K = 0:

If you find that any of the following are not possible, write "N.P." in the answer box.

(b) The range of values for K that make the closed-loop system *stable* is

(c) The closed-loop system is *critically damped* when K =

(d) The closed-loop damping ratio is $\zeta = 1/\sqrt{2}$ when K =

ECE 3084

FINAL EXAM

School of Electrical and Computer Engineering Georgia Institute of Technology May 3, 2017

ANSWER KEY

Name:

- 1. The exam is closed book & notes, except for three 2-sided sheets of handwritten notes.
- 2. Silence your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	10	
2	15	
3	15	
4	10	
5	15	
6	10	
7	10	
8	15	
TOTAL:	100	

PROBLEM 1. (10 points)

Let
$$X(s) = \frac{(1 - e^{-s})^3}{s^2}$$
.

(a) In terms of r(t) = tu(t), the inverse Laplace transform of X(s) can be

written as:
$$x(t) = Ar(t) + Br(t - C) + Dr(t - E) + Fr(t - G)$$

where (*hint:* all answers are integers!):

$$A = \begin{bmatrix} 1 \end{bmatrix}, B = \begin{bmatrix} -3 \end{bmatrix}, C = \begin{bmatrix} 1 \end{bmatrix}, D = \begin{bmatrix} 3 \end{bmatrix}, E = \begin{bmatrix} 2 \end{bmatrix}, F = \begin{bmatrix} -1 \end{bmatrix}, G = \begin{bmatrix} 3 \end{bmatrix}$$

(b) Provide a sketch of x(t) in the space below, *taking care to carefully label both axes*:

PROBLEM 2. (15 points)

Below are three systems with input x(t) and output y(t). Specify which properties they satisfy by writing a "Y" (for yes) or "N" (for no) into each answer box:

PROBLEM 3. (15 points)

Find an equation for the convolution of $x(t) = \left(\frac{\sin(8\pi t)}{\pi t}\right)^2$ with $h(t) = \cos(2\pi t)$, simplified as much as possible (no integrals!):

$$y(t) = x(t) * h(t) = \frac{7\cos(2\pi t)}{1000}$$

PROBLEM 4. (10 points)

- (a) In "I & Q", the "I" stands for in-phase , and "Q" stands for quadrature
- (b) In twelve words or less, what is "pulse compression"?

shortening of pulse "width" via matched filter

Explain!

For an *even* signal: the first integral is nonzero, while the second integral is zero.

PROBLEM 5. (10 points)

You are an engineer charged with constructing three bandpass filters having the following frequency response:

^{1.} The ideal LPF rejects all frequencies *above* its ω_c , while the ideal HPF rejects all frequencies *below* its ω_c .

PROBLEM 6. (10 points)

Shown below is a circuit diagram of a [LPF] [BPF] [HPF] (circle one), with a L = 0.2 H inductor and a $C = 5/\pi^2 \approx 0.507$ F capacitor:

Also shown above is the step response. From this, estimate as close as possible the resistor value:

$$H(s) = \frac{1/(sC)}{1/(sC) + R + sL}$$
$$= \frac{1/(LC)}{s^2 + \frac{R}{L}s + 1/(LC)}$$
$$= \frac{\pi}{s^2 + 5Rs + \pi^2}$$
$$\Rightarrow 5R = 2\zeta\omega_n = 2\pi\zeta = 0.1\pi$$

 $\Rightarrow R = 0.02\pi = 0.063.$

PROBLEM 7. (10 points)

A sinc function $s(t) = \sin(12\pi t)/(\pi t)$ is passed through an ideal high-pass filter with cutoff 8π (its frequency response is $H(j\omega) = 0$ for $|\omega| < 8\pi$, and $H(j\omega) = 1$ for $|\omega| > 8\pi$). The HPF output x(t) is then passed as an input into a back-to-back connection of an ideal analog-to-digital converter (ADC) followed by an ideal digital-to-analog (DAC) converter, both with sampling rate $f_s = 5$ Hz:

Find an equation for the DAC output y(t), simplified as much as possible:

$$\Rightarrow x(t) = 2g(t)\cos(10\pi t) \Rightarrow x[n] = 2g(\frac{n}{5})\cos(10\pi \frac{n}{5}) = 2g(\frac{n}{f_s}) \Rightarrow y(t) = 2g(t)$$

$$y(t) = \frac{2\frac{\sin(2\pi t)}{\pi t}}{\pi t}$$

PROBLEM 8. (15 points)

Consider the control system shown below:

(a) Sketch the pole-zero plot of the closed-loop system H(s) = Y(s)/R(s) when K = 0:

$$H(s) = \frac{GG}{1+GG} = \frac{K(s+1/K)}{s^2 + (K-2)s+1} \stackrel{K=0}{=} \frac{1}{(s-1)^2} \quad \xrightarrow{(2)}{1}$$

If you find that any of the following are not possible, write "N.P." in the answer box.

(b) The range of values for K that make the closed-loop system *stable* is

٦

(c) The closed-loop system is *critically damped* when
$$K = 4$$
.

(d) The closed-loop damping ratio is $\zeta = 1/\sqrt{2}$ when $K = \left| 2 + \sqrt{2} \right| \approx 3.414$