ECE 3084

FINAL EXAM

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY MAY 5, 2016

- 1. The exam is closed book, except for three 2-sided sheets of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	15	
3	15	
4	15	
5	15	
6	20	
TOTAL:	100	

PROBLEM 1. (20 points)

Consider an LTI filter with a rectangular impulse response is h(t) = 4(u(t-0.5) - u(t-2.5)):

- (a) The d.c. gain of the filter is $H_0 =$
- (b) The Laplace transform of h(t) is H(s) =
- (c) Specify three values of f_0 such that a sinusoidal input of the form $x(t) = \cos(2\pi f_0 t)$ will result in a zero output:

$$f_0 = oxed{ } , \qquad ext{or} \qquad f_0 = oxed{ } , \qquad ext{or} \qquad f_0 = oxed{ } .$$

(d) Carefully sketch in the space below the signal h(-t):

(e) Carefully sketch the output y(t) in the space below for the case when the input is x(t) = h(-t):

PROBLEM 2. Suppose $s(t) = \left(\frac{\sin(\pi t)}{\pi t}\right)^2$ is fed into the following cascade of oscillators and filters:

The lone HPF is ideal with unity gain and rejects all frequencies below 4π rad/s.

The two LPF's are ideal with unity gain and reject all frequencies above $4\pi \text{ rad/s}$.

PROBLEM 3. (15 points)

Consider a 2nd-order system with transfer function

$$H(s) = \frac{1}{s^2 + bs + c},$$

where the constants b and c are positive. When $b^2 < 4c$, the two poles will be *complex*:

- one pole will be at a location p in the upper half of the s plane;
- the other pole will be at the conjugate location p^* in the lower half of the s plane.

Shown above are eight possible locations for the upper pole p. (The lower pole at p^* is not shown.)

Match each location p above with its corresponding step response below by writing a letter from $\{A, B, C, D, E, F, G, H\}$ into each answer box below:

PROBLEM 4. Shown on the left are the step responses of eight second-order low-pass filters, labeled A through H. Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding step response by writing a letter (A through H) in each answer box.

PROBLEM 5. (15 points)

Consider the following closed-loop system with zero initial conditions:

When the input is the decaying exponential $r(\,t\,)=e^{-t}u(\,t\,)$, the output can be written as:

$$y(t) = (Ae^{-t} + Be^{-Ct})u(t),$$

where

PROBLEM 6. (20 points)

The diagram below shows feedback control of a plant with transfer function $G_p(s) = \frac{1}{s(s+2)}$:

The closed-loop transfer function is H(s) = Y(s)/R(s). The controller can be expressed as:

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s.$$

NOTATION:	K_p	K_i	K_d
P:	nonzero	0	0
PI:	nonzero	nonzero	0
PD:	nonzero	0	nonzero
PID:	nonzero	nonzero	nonzero

- (a) H(s) is a third-order system when using [P][PI][PD][PID] control. (Circle all that apply.)
- (b) H(s) is a second-order system when using [P][PI][PD][PID] control. (Circle all that apply.)
- (c) The d.c. gain is H(0) = 1 when using [P][PI][PD][PID] control. (Circle all that apply.)
- (d) With P control, oscillations in the closed-loop step response can be avoided by choosing $K_p < \$
- (e) With P control, a damping ratio of $\zeta=1/\sqrt{2}$ can be achieved by choosing $K_p=$
- (f) Consider the special case of PD control wheresay $K_p=4K$ and $K_d=K$. In this case we can get $\zeta=1/\sqrt{2}$ by choosing $K=1/\sqrt{2}$

ECE 3084

FINAL EXAM

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY MAY 5, 2016

- 1. The exam is closed book, except for three 2-sided sheets of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	15	
3	15	
4	15	
5	15	
6	20	
TOTAL:	100	

PROBLEM 1. (20 points)

Consider an LTI filter with a rectangular impulse response is h(t) = 4(u(t-0.5) - u(t-2.5)):

- (a) The d.c. gain of the filter is $H_0 = \begin{bmatrix} 8 & 1 \\ 1 & 1 \end{bmatrix}$
- (b) The Laplace transform of h(t) is $H(s) = \frac{4}{s} (e^{-0.5s} e^{-2.5s})$
- (c) Specify three values of f_0 such that a sinusoidal input of the form $x(t) = \cos(2\pi f_0 t)$ will result in a zero output:

(d) Carefully sketch in the space below the signal h(-t):

(e) Carefully sketch the output y(t) in the space below for the case when the input is x(t) = h(-t):

PROBLEM 2. Suppose $s(t) = \left(\frac{\sin(\pi t)}{\pi t}\right)^2$ is fed into the following cascade of oscillators and filters:

The lone HPF is ideal with unity gain and rejects all frequencies below $4\pi \text{ rad/s}$.

The two LPF's are ideal with unity gain and reject all frequencies above $4\pi \text{ rad/s}$.

Sketch in the space below the Fourier transform of each of the signals $x_1(t)$ through $x_7(t)$ in the diagram:

PROBLEM 3. (15 points)

Consider a 2nd-order system with transfer function

$$H(s) = \frac{1}{s^2 + bs + c},$$

where the constants b and c are positive. When $b^2 < 4c$, the two poles will be *complex*:

- one pole will be at a location p in the upper half of the s plane;
- the other pole will be at the conjugate location p^* in the lower half of the s plane.

Shown above are eight possible locations for the upper pole p. (The lower pole at p^* is not shown.)

Match each location p above with its corresponding step response below by writing a letter from $\{A, B, C, D, E, F, G, H\}$ into each answer box below:

PROBLEM 4. Shown on the left are the step responses of eight second-order low-pass filters, labeled A through H. Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding step response by writing a letter (A through H) in each answer box.

PROBLEM 5. (15 points)

Consider the following closed-loop system with zero initial conditions:

When the input is the decaying exponential $r(\,t\,)=e^{-t}u(\,t\,)$, the output can be written as:

$$y(t) = (Ae^{-t} + Be^{-Ct})u(t),$$

where

$$A = \boxed{ 0 } \qquad B = \boxed{ 1 } \qquad C = \boxed{ 3 }$$

PROBLEM 6. (20 points)

The diagram below shows feedback control of a plant with transfer function $G_p(s) = \frac{1}{s(s+2)}$:

The closed-loop transfer function is H(s) = Y(s)/R(s). The controller can be expressed as:

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s.$$

NOTATION:	K_p	K_i	K_d
P:	nonzero	0	0
PI:	nonzero	nonzero	0
PD:	nonzero	0	nonzero
PID:	nonzero	nonzero	nonzero

- (a) H(s) is a *third*-order system when using [P][PI][PD][PID] control. (Circle all that apply.)
- (b) H(s) is a *second*-order system when using P[P][PD][PID] control. (Circle all that apply.)
- (c) The d.c. gain is H(0) = 1 when using PIPP PD PID control. (Circle all that apply.)
- (d) With P control, oscillations in the closed-loop step response can be avoided by choosing $K_p < 1$
- (f) Consider the special case of PD control where $K_p=4K$ and $K_d=K$. In this case we can get $\zeta=1/\sqrt{2}$ by choosing K=2.