Final Exam

School of Electrical and Computer Engineering
Georgia Institute of Technology
MAY 5, 2016

Name: \qquad

1. The exam is closed book, except for three 2-sided sheets of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	15	
3	15	
4	15	
5	15	
6	20	
TOTAL:	100	

PROBLEM 1. (20 points)
Consider an LTI filter with a rectangular impulse response is $h(t)=4(u(t-0.5)-u(t-2.5))$:

(a) The d.c. gain of the filter is $H_{0}=\square$.
(b) The Laplace transform of $h(t)$ is $H(s)=\square$.
(c) Specify three values of f_{0} such that a sinusoidal input of the form $x(t)=\cos \left(2 \pi f_{0} t\right)$ will result in a zero output:

$$
f_{0}=\square, \quad \text { or } \quad f_{0}=\square, \quad \text { or } \quad f_{0}=\square .
$$

(d) Carefully sketch in the space below the signal $h(-t)$:

(e) Carefully sketch the output $y(t)$ in the space below for the case when the input is $x(t)=h(-t)$:

PROBLEM 2. Suppose $s(t)=\left(\frac{\sin (\pi t)}{\pi t}\right)^{2}$ is fed into the following cascade of oscillators and filters:

The lone HPF is ideal with unity gain and rejects all frequencies below $4 \pi \mathrm{rad} / \mathrm{s}$.
The two LPF's are ideal with unity gain and reject all frequencies above $4 \pi \mathrm{rad} / \mathrm{s}$.
Sketch in the space below the Fourier transform of each of the signals $x_{1}(t)$ through $x_{7}(t)$ in the diagram:

Consider a 2nd-order system with transfer function

$$
H(s)=\frac{1}{s^{2}+b s+c},
$$

where the constants b and c are positive. When $b^{2}<4 c$, the two poles will be complex:

- one pole will be at a location p in the upper half of the s plane;
- the other pole will be at the conjugate location p^{*} in the lower half of the s plane.

Shown above are eight possible locations for the upper pole p. (The lower pole at p^{*} is not shown.)
Match each location p above with its corresponding step response below by writing a letter from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\}$ into each answer box below:
(a)

\square

\square

\square

\square

\square

\square

\square

PROBLEM 4. Shown on the left are the step responses of eight second-order low-pass filters, labeled A through H . Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding step response by writing a letter (A through H) in each answer box.

PROBLEM 5. (15 points)
Consider the following closed-loop system with zero initial conditions:

When the input is the decaying exponential $r(t)=e^{-t} u(t)$, the output can be written as:
where

$$
y(t)=\left(A e^{-t}+B e^{-C t}\right) u(t)
$$

$$
A=\square \quad B=\square .
$$

PROBLEM 6. (20 points)
The diagram below shows feedback control of a plant with transfer function $G_{p}(s)=\frac{1}{s(s+2)}$:

The closed-loop transfer function is $H(s)=Y(s) / R(s)$. The controller can be expressed as:

$$
G_{c}(s)=K_{p}+\frac{K_{i}}{s}+K_{d} s
$$

NOTATION:	K_{p}		K_{i}	
		K_{d}		
PI:	nonzero		0	
PD:	nonzero		nonzero	
PID:	nonzero		0	
nonzero	nonzero	nonzero		

(a) $H(s)$ is a third-order system when using $\quad[\mathrm{P}][\mathrm{PI}][\mathrm{PD}][\mathrm{PID}]$ control. (Circle all that apply.)
(b) $H(s)$ is a second-order system when using [P$][\mathrm{PI}][\mathrm{PD}][\mathrm{PID}]$ control. (Circle all that apply.)
(c) The d.c. gain is $H(0)=1$ when using $[\mathrm{P}][\mathrm{PI}][\mathrm{PD}][\mathrm{PID}]$ control. (Circle all that apply.)
(d) With P control, oscillations in the closed-loop step response can be avoided by choosing $K_{p}<$ \square
(e) With P control, a damping ratio of $\zeta=1 / \sqrt{2}$ can be achieved by choosing $K_{p}=$ \square
(f) Consider the special case of PD control wheresay $K_{p}=4 K$ and $K_{d}=K$. In this case we can get $\zeta=1 / \sqrt{2}$ by choosing

$$
\begin{aligned}
& K . \\
& K \\
& K
\end{aligned}
$$

Final Exam

School of Electrical and Computer Engineering
Georgia Institute of Technology
MAY 5, 2016

Name: \qquad

1. The exam is closed book, except for three 2-sided sheets of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	20	
2	15	
3	15	
4	15	
5	15	
6	20	
TOTAL:	100	

PROBLEM 1. (20 points)
Consider an LTI filter with a rectangular impulse response is $h(t)=4(u(t-0.5)-u(t-2.5))$:

(a) The d.c. gain of the filter is $H_{0}=88$.
(b) The Laplace transform of $h(t)$ is $H(s)=\frac{4}{s}\left(e^{-0.5 s}-e^{-2.5 s}\right)$
(c) Specify three values of f_{0} such that a sinusoidal input of the form $x(t)=\cos \left(2 \pi f_{0} t\right)$ will result in a zero output:

$$
f_{0}=0.5, \quad \text { or } \quad f_{0}=1, \quad \text { or } \quad f_{0}=1.5
$$

(d) Carefully sketch in the space below the signal $h(-t)$:

(e) Carefully sketch the output $y(t)$ in the space below for the case when the input is $x(t)=h(-t)$:

PROBLEM 2. Suppose $s(t)=\left(\frac{\sin (\pi t)}{\pi t}\right)^{2}$ is fed into the following cascade of oscillators and filters:

The lone HPF is ideal with unity gain and rejects all frequencies below $4 \pi \mathrm{rad} / \mathrm{s}$.
The two LPF's are ideal with unity gain and reject all frequencies above $4 \pi \mathrm{rad} / \mathrm{s}$.
Sketch in the space below the Fourier transform of each of the signals $x_{1}(t)$ through $x_{7}(t)$ in the diagram:

Consider a 2nd-order system with transfer function

$$
H(s)=\frac{1}{s^{2}+b s+c},
$$

where the constants b and c are positive. When $b^{2}<4 c$, the two poles will be complex:

- one pole will be at a location p in the upper half of the s plane;
- the other pole will be at the conjugate location p^{*} in the lower half of the s plane.

Shown above are eight possible locations for the upper pole p. (The lower pole at p^{*} is not shown.)
Match each location p above with its corresponding step response below by writing a letter from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\}$ into each answer box below:
(a)
н

\square

C

\square

PROBLEM 4. Shown on the left are the step responses of eight second-order low-pass filters, labeled A through H . Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding step response by writing a letter (A through H) in each answer box.

PROBLEM 5. (15 points)
Consider the following closed-loop system with zero initial conditions:

When the input is the decaying exponential $r(t)=e^{-t} u(t)$, the output can be written as:
where

$$
y(t)=\left(A e^{-t}+B e^{-C t}\right) u(t)
$$

$$
A=0 \quad B=1 .
$$

PROBLEM 6. (20 points)
The diagram below shows feedback control of a plant with transfer function $G_{p}(s)=\frac{1}{s(s+2)}$:

The closed-loop transfer function is $H(s)=Y(s) / R(s)$. The controller can be expressed as:

$$
G_{c}(s)=K_{p}+\frac{K_{i}}{s}+K_{d} s
$$

NOTATION:	K_{p}		K_{i}	
		K_{d}		
Ponzero		0		0
PD:	nonzero		nonzero	
PID:	nonzero		0	nonzero
Ponzero	nonzero	nonzero		

(a) $H(s)$ is a third-order system when using [P] PI PD$]$ PID] control. (Circle all that apply.)
(b) $H(s)$ is a second-order system when using (P) PI]PD [PID] control. (Circle all that apply.)
(c) The d.c. gain is $H(0)=1$ when using (P) PI PD PID control. (Circle all that apply.)
(d) With P control, oscillations in the closed-loop step response can be avoided by choosing $K_{p}<\quad 1$
(e) With P control, a damping ratio of $\zeta=1 / \sqrt{2}$ can be achieved by choosing $K_{p}=2$.
(f) Consider the special case of PD control where $K_{p}=4 K$ and $K_{d}=K$. In this case we can get $\zeta=1 / \sqrt{2}$ by choosing

