ECE 3084

FINAL EXAM

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 28, 2015

Name:

- 1. The exam is closed book, except for three 2-sided sheets of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	15	
2	10	
3	15	
4	15	
5	15	
6	15	
7	15	
TOTAL:	100	

PROBLEM 1. (15 points)

Consider an LTI filter whose impulse response is $h(t) = \delta(t) + 0.5\delta(t-1) + 0.75\delta(t-2)$:

The lone **HPF** is ideal with unity gain and rejects all frequencies below 4π rad/s. The two LPF's are ideal with unity gain and reject all frequencies *above* 4π rad/s. Sketch in the space below the Fourier transform of each of the signals $x_1(t)$ through $x_7(t)$ in the diagram: $X_1(j\omega) \downarrow$

PROBLEM 3. (15 points)

Consider a second-order system with transfer function

$$H(s) = \frac{1}{s^2 + bs + c},$$

where the constants b and c are positive. When $b^2 < 4c$, the two poles will be *complex*:

• one pole will be at a location p in the upper half of the s plane;

• the other pole will be at the conjugate location p^* in the lower half of the s plane.

Shown above are eight possible locations for the upper pole p. (The lower pole at p^* is not shown.)

Match each location p above with its corresponding step response below by writing a letter from $\{A, B, C, D, E, F, G, H\}$ into each answer box below:

(a)

PROBLEM 4. (15 points)

(a)

Consider an LTI system with input x(t), output y(t), and transfer function $H(s) = \frac{2s}{s+8}$. YES NO The system is BIBO stable.

- (b) The system acts as a [LPF][BPF][HPF]. (Circle one.)
- (c) Write a differential equation relating the input x(t) to the output y(t) of this system:

(d) Find an equation for the "ramp response" of this system; i.e., find the output y(t) when the input is the unit ramp x(t) = tu(t):

$$y(t) =$$

(e) Use the final value theorem to determine the steady-state value $y(\infty)$ of the ramp response:

$$y(\infty) =$$

(Sanity check: your answers to parts (d) and (e) should agree.)

PROBLEM 5. Shown on the left are the step responses of eight second-order filters, labeled A through H. Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding step response by writing a letter (A through H) in each answer box.

PROBLEM 6. (15 points)

Consider the following closed-loop system with zero initial conditions:

When the input is the decaying exponential $r(t) = e^{-t}u(t)$, the output can be written as:

$$y(t) = (Ae^{-t} + Be^{-Ct})u(t),$$

where

$$A = \boxed{ \qquad \qquad B = \boxed{ \qquad \qquad C = \boxed{ \qquad \qquad }}.$$

PROBLEM 7. (15 points)

The diagram below shows feedback control of a plant with transfer function $G_p(s) = \frac{1}{s(s+2)}$:

The closed-loop transfer function is H(s) = Y(s)/R(s). The controller can be expressed as:

	NOTATION:	K_p	K_i	K_d
$C(\alpha) = K + K_i + K_i$	P:	nonzero	0	0
$G_c(s) \equiv K_p + \frac{1}{s} + K_d s.$	PI:	nonzero	nonzero	0
	PD:	nonzero	0	nonzero
	PID:	nonzero	nonzero	nonzero

(a) H(s) is a *third*-order system when using [P][PI][PD][PID] control. (Circle all that apply.)
(b) H(s) is a *second*-order system when using [P][PI][PD][PID] control. (Circle all that apply.)

(c) The d.c. gain is H(0) = 1 when using [P][PI][PD][PID] control. (Circle all that apply.)

(d) With P control, oscillations in the closed-loop step response can be avoided by choosing $K_p <$

(e) With P control, a damping ratio of
$$\zeta = 1/\sqrt{2}$$
 can be achieved by choosing $K_p =$

ECE 3084

FINAL EXAM

School of Electrical and Computer Engineering Georgia Institute of Technology April 28, 2015

ANSWER KEY

Name:

- 1. The exam is closed book, except for three 2-sided sheets of handwritten notes.
- 2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
- 3. Final answers must be entered into the answer box.
- 4. Correct answers must be accompanied by concise justifications to receive full credit.
- 5. Do not attach additional sheets. If necessary, use the back of the previous page.

Problem	Points	Score
1	15	
2	10	
3	15	
4	15	
5	15	
6	15	
7	15	
TOTAL:	100	

PROBLEM 1. (15 points)

Consider an LTI filter whose impulse response is $h(t) = \delta(t) + 0.5\delta(t-1) + 0.75\delta(t-2)$:

- (a) The d.c. gain of the filter is $H_0 =$
- (b) The Laplace transform of h(t) is $H(s) = \begin{bmatrix} 1 + 0.5e^{-s} + 0.75e^{-2s} \end{bmatrix}$
- (c) Suppose the input x(t) is the following triangular pulse:

(d) If instead of being triangular, the input x(t) is the 8-Hz sinusoid $x(t) = \cos(16\pi t)$, then the output can be written as $y(t) = A\cos(16\pi t + \theta)$, where:

PROBLEM 2. Suppose $s(t) = \left(\frac{\sin(\pi t)}{\pi t}\right)^2$ is fed into the following cascade of oscillators and filters: $s(t) = \left(\frac{\sin(\pi t)}{\pi t}\right)^2 \xrightarrow{x_1(t)} \xrightarrow{x_2(t)} \xrightarrow{HPF}_{H_1(j\omega)} \xrightarrow{x_3(t)} \xrightarrow{x_4(t)} \xrightarrow{LPF}_{H_2(j\omega)} \xrightarrow{x_5(t)} \xrightarrow{x_6(t)} \xrightarrow{LPF}_{H_2(j\omega)} \xrightarrow{x_7(t)} \xrightarrow$

The lone **HPF** is ideal with unity gain and rejects all frequencies below $4\pi \text{ rad/s}$. The two LPF's are ideal with unity gain and reject all frequencies *above* $4\pi \text{ rad/s}$. Sketch in the space below the Fourier transform of each of the signals $x_1(t)$ through $x_7(t)$ in the diagram:

PROBLEM 3. (15 points)

Consider a second-order system with transfer function

$$H(s) = \frac{1}{s^2 + bs + c},$$

where the constants b and c are positive. When $b^2 < 4c$, the two poles will be *complex*:

• one pole will be at a location p in the upper half of the s plane;

• the other pole will be at the conjugate location p^* in the lower half of the s plane.

Shown above are eight possible locations for the upper pole p. (The lower pole at p^* is not shown.)

Match each location p above with its corresponding step response below by writing a letter from $\{A, B, C, D, E, F, G, H\}$ into each answer box below:

PROBLEM 4. (15 points)

Consider an LTI system with input x(t), output y(t), and transfer function $H(s) = \frac{2s}{s+8}$.

- (a) \bigvee_{NO}^{YES} NO The system is BIBO stable.
- (b) The system acts as a [LPF][BPF (HPF). (Circle one.)
- (c) Write a differential equation relating the input x(t) to the output y(t) of this system:

$$\frac{d}{dt}y(t) + 8y(t) = 2\frac{d}{dt}x(t)$$

(d) Find an equation for the "ramp response" of this system; i.e., find the output y(t) when the input is the unit ramp x(t) = tu(t):

$$y(t) = rac{1}{4} (1 - e^{-8t}) u(t)$$

(e) Use the final value theorem to determine the steady-state value $y(\infty)$ of the ramp response:

$$y(\infty) =$$
 $\frac{1}{4}$

(Sanity check: your answers to parts (d) and (e) should agree.)

PROBLEM 5. Shown on the left are the step responses of eight second-order filters, labeled A through H. Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding step response by writing a letter (A through H) in each answer box.

PROBLEM 6. (15 points)

Consider the following closed-loop system with zero initial conditions:

When the input is the decaying exponential $r(t) = e^{-t}u(t)$, the output can be written as:

$$y(t) = (Ae^{-t} + Be^{-Ct})u(t),$$

where

$$A = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \qquad B = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix} \qquad C = \begin{bmatrix} \mathbf{3} \\ \mathbf{3} \end{bmatrix}.$$

PROBLEM 7. (15 points)

The diagram below shows feedback control of a plant with transfer function $G_p(s) = \frac{1}{s(s+2)}$:

The closed-loop transfer function is H(s) = Y(s)/R(s). The controller can be expressed as:

$G_c(s) = K_p + \frac{K_i}{s} + K_d s.$ P: nonzero PI: nonzero PD: nonzero	0 nonzero 0	0 0
$G_c(s) = K_p + \frac{1}{s} + K_d s.$ PI: nonzero	nonzero 0	0
DD: nonzoro	0	
PD: nonzero		nonzero
PID: nonzero	nonzero	nonzero
(a) $H(s)$ is a <i>third</i> -order system when using $[P](PD][PD][PD]$ control.	(Circle	all that apply.)
(b) $H(s)$ is a <i>second</i> -order system when using (P) PI $[PD]$ PD $[PD]$ ontrol.	(Circle	all that apply.)
(c) The d.c. gain is $H(0) = 1$ when using PPIPD PD PD control.	(Circle	all that apply.)
(d) With P control, oscillations in the closed-loop step response can be avoided by choosing K	$T_p < $	1

(e) With P control, a damping ratio of
$$\zeta = 1/\sqrt{2}$$
 can be achieved by choosing $K_p = 2$

(f) Using PD control with
$$K_p = 25$$
, the closed-loop step response can be made to achieve its maximum value at time $t_{max} = 2$ seconds by choosing $K_d = 7.49$