Final Exam

## School of Electrical and Computer Engineering

Georgia Institute of Technology
APRIL 28, 2015

Name: $\qquad$

1. The exam is closed book, except for three 2-sided sheets of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

| Problem | Points | Score |
| :---: | :---: | :---: |
| 1 | 15 |  |
| 2 | 10 |  |
| 3 | 15 |  |
| 4 | 15 |  |
| 5 | 15 |  |
| 6 | 15 |  |
| 7 | 15 |  |
| TOTAL: |  |  |

PROBLEM 1. (15 points)
Consider an LTI filter whose impulse response is $h(t)=\delta(t)+0.5 \delta(t-1)+0.75 \delta(t-2)$ :

(a) The d.c. gain of the filter is $H_{0}=$

(b) The Laplace transform of $h(t)$ is $H(s)=$ $\square$
(c) Suppose the input $x(t)$ is the following triangular pulse:


In this case, carefully sketch the output $y(t)$ in the space below:

(d) If instead of being triangular, the input $x(t)$ is the $8-\mathrm{Hz}$ sinusoid $x(t)=\cos (16 \pi t)$, then the output can be written as $y(t)=A \cos (16 \pi t+\theta)$, where:

$$
A=\square \quad \text { and } \quad \theta=\square .
$$

PROBLEM 2. Suppose $s(t)=\left(\frac{\sin (\pi t)}{\pi t}\right)^{2}$ is fed into the following cascade of oscillators and filters:


The lone HPF is ideal with unity gain and rejects all frequencies below $4 \pi \mathrm{rad} / \mathrm{s}$.
The two LPF's are ideal with unity gain and reject all frequencies above $4 \pi \mathrm{rad} / \mathrm{s}$.
Sketch in the space below the Fourier transform of each of the signals $x_{1}(t)$ through $x_{7}(t)$ in the diagram:


Consider a second-order system with transfer function

$$
H(s)=\frac{1}{s^{2}+b s+c},
$$

where the constants $b$ and $c$ are positive. When $b^{2}<4 c$, the two poles will be complex:


- one pole will be at a location $p$ in the upper half of the $s$ plane;
- the other pole will be at the conjugate location $p^{*}$ in the lower half of the $s$ plane.

Shown above are eight possible locations for the upper pole $p$. (The lower pole at $p^{*}$ is not shown.)
Match each location $p$ above with its corresponding step response below by writing a letter from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\}$ into each answer box below:
(a)




$\square$









$\square$


## PROBLEM 4. (15 points)

Consider an LTI system with input $x(t)$, output $y(t)$, and transfer function $H(s)=\frac{2 s}{s+8}$.
(a) $\quad \square \quad \mathrm{NO}$ The system is BIBO stable.
(b) The system acts as a [ LPF ][ BPF ][ HPF ]. (Circle one.)
(c) Write a differential equation relating the input $x(t)$ to the output $y(t)$ of this system:
(d) Find an equation for the "ramp response" of this system;
i.e., find the output $y(t)$ when the input is the unit $\operatorname{ramp} x(t)=t u(t)$ :

$$
y(t)=
$$


(e) Use the final value theorem to determine the steady-state value $y(\infty)$ of the ramp response:

$$
y(\infty)=\square
$$

PROBLEM 5. Shown on the left are the step responses of eight second-order filters, labeled A through H. Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding step response by writing a letter (A through $H$ ) in each answer box.


PROBLEM 6. (15 points)
Consider the following closed-loop system with zero initial conditions:


When the input is the decaying exponential $r(t)=e^{-t} u(t)$, the output can be written as:
where

$$
y(t)=\left(A e^{-t}+B e^{-C t}\right) u(t)
$$

$$
A=\square \quad B=\square .
$$

The diagram below shows feedback control of a plant with transfer function $G_{p}(s)=\frac{1}{s(s+2)}$ :


The closed-loop transfer function is $H(s)=Y(s) / R(s)$. The controller can be expressed as:

$$
G_{c}(s)=K_{p}+\frac{K_{i}}{s}+K_{d} s
$$

| NOTATION: | $K_{p}$ |  | $K_{i}$ |  |
| ---: | :---: | :---: | :---: | :---: |
|  |  | $K_{d}$ |  |  |
| PI: | nonzero |  | 0 |  |
| Ponzero |  | nonzero |  | 0 |
| PD: | nonzero |  | 0 | nonzero |
| PID: | nonzero | nonzero | nonzero |  |

(a) $H(s)$ is a third-order system when using $\quad[\mathrm{P}][\mathrm{PI}][\mathrm{PD}][\mathrm{PID}]$ control. (Circle all that apply.)
(b) $H(s)$ is a second-order system when using [ P$][\mathrm{PI}][\mathrm{PD}][\mathrm{PID}]$ control. (Circle all that apply.)
(c) The d.c. gain is $H(0)=1$ when using $[\mathrm{P}][\mathrm{PI}][\mathrm{PD}][\mathrm{PID}]$ control. (Circle all that apply.)
(d) With P control, oscillations in the closed-loop step response can be avoided by choosing $K_{p}<$ $\square$
(e) With P control, a damping ratio of $\zeta=1 / \sqrt{2}$ can be achieved by choosing $K_{p}=$ $\square$
(f) Using PD control with $K_{p}=25$, the closed-loop step response can be made to achieve its maximum value at time $t_{\max }=2$ seconds by choosing $K_{d}=$ $\square$

ECE 3084

Final Exam

School of Electrical and Computer Engineering
Georgia Institute of Technology
APRIL 28, 2015

## Answer Key

Name: $\qquad$

1. The exam is closed book, except for three 2-sided sheets of handwritten notes.
2. Turn off your phone and put it away. No tablets/laptops/WiFi/etc. Calculators are OK.
3. Final answers must be entered into the answer box.
4. Correct answers must be accompanied by concise justifications to receive full credit.
5. Do not attach additional sheets. If necessary, use the back of the previous page.

| Problem | Points | Score |
| :---: | :---: | :---: |
| 1 | 15 |  |
| 2 | 10 |  |
| 3 | 15 |  |
| 4 | 15 |  |
| 5 | 15 |  |
| 6 | 15 |  |
| 7 | 15 |  |
| TOTAL: |  |  |

PROBLEM 1. (15 points)
Consider an LTI filter whose impulse response is $h(t)=\delta(t)+0.5 \delta(t-1)+0.75 \delta(t-2)$ :

(a) The d.c. gain of the filter is $H_{0}=$ 2.25
(b) The Laplace transform of $h(t)$ is $H(s)=$

$$
1+0.5 e^{-s}+0.75 e^{-2 s}
$$

(c) Suppose the input $x(t)$ is the following triangular pulse:


In this case, carefully sketch the output $y(t)$ in the space below:

(d) If instead of being triangular, the input $x(t)$ is the $8-\mathrm{Hz} \operatorname{sinusoid} x(t)=\cos (16 \pi t)$, then the output can be written as $y(t)=A \cos (16 \pi t+\theta)$, where:

$$
A=2.25 \quad \text { and } \quad \theta=0
$$

PROBLEM 2. Suppose $s(t)=\left(\frac{\sin (\pi t)}{\pi t}\right)^{2}$ is fed into the following cascade of oscillators and filters:


The lone HPF is ideal with unity gain and rejects all frequencies below $4 \pi \mathrm{rad} / \mathrm{s}$.
The two LPF's are ideal with unity gain and reject all frequencies above $4 \pi \mathrm{rad} / \mathrm{s}$.
Sketch in the space below the Fourier transform of each of the signals $x_{1}(t)$ through $x_{7}(t)$ in the diagram:


Consider a second-order system with transfer function

$$
H(s)=\frac{1}{s^{2}+b s+c},
$$

where the constants $b$ and $c$ are positive. When $b^{2}<4 c$, the two poles will be complex:


- one pole will be at a location $p$ in the upper half of the $s$ plane;
- the other pole will be at the conjugate location $p^{*}$ in the lower half of the $s$ plane.

Shown above are eight possible locations for the upper pole $p$. (The lower pole at $p^{*}$ is not shown.)
Match each location $p$ above with its corresponding step response below by writing a letter from $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}\}$ into each answer box below:
(a)



## B


$\square$


C


$\square$



## PROBLEM 4. (15 points)

Consider an LTI system with input $x(t)$, output $y(t)$, and transfer function $H(s)=\frac{2 s}{s+8}$.
(a) $\stackrel{\text { YES }}{ } \quad \square$

The system is BIBO stable.
(b) The system acts as a [LPF ][ BPF HPF. (Circle one.)
(c) Write a differential equation relating the input $x(t)$ to the output $y(t)$ of this system:

$$
\frac{d}{d t} y(t)+8 y(t)=2 \frac{d}{d t} x(t)
$$

(d) Find an equation for the "ramp response" of this system; i.e., find the output $y(t)$ when the input is the unit ramp $x(t)=t u(t)$ :

$$
y(t)=
$$

(e) Use the final value theorem to determine the steady-state value $y(\infty)$ of the ramp response:

$$
y(\infty)=\frac{1}{4}
$$

(Sanity check: your answers to parts (d) and (e) should agree.)

PROBLEM 5. Shown on the left are the step responses of eight second-order filters, labeled A through H. Shown on the right are the magnitude responses for these filters, but in a scrambled order. Match each magnitude response to its corresponding step response by writing a letter (A through $H$ ) in each answer box.


PROBLEM 6. (15 points)
Consider the following closed-loop system with zero initial conditions:


When the input is the decaying exponential $r(t)=e^{-t} u(t)$, the output can be written as:
where

$$
y(t)=\left(A e^{-t}+B e^{-C t}\right) u(t)
$$

$$
A=0 \quad B=1 . \quad C=3
$$

The diagram below shows feedback control of a plant with transfer function $G_{p}(s)=\frac{1}{s(s+2)}$ :


The closed-loop transfer function is $H(s)=Y(s) / R(s)$. The controller can be expressed as:

$$
G_{c}(s)=K_{p}+\frac{K_{i}}{s}+K_{d} s
$$

| NOTATION: | $K_{p}$ | $K_{i}$ | $K_{d}$ |
| :---: | :---: | :---: | :---: |
| P: | nonzero | 0 | 0 |
| PI: | nonzero | nonzero | 0 |
| PD: | nonzero | 0 | nonzero |
| PID: | nonzero | nonzero | nonzero |

(a) $H(s)$ is a third-order system when using $\quad \mathrm{P}]$ PI PD$]$ control. (Circle all that apply.)
(b) $H(s)$ is a second-order system when using (P) PI ]PD [PID ] control. (Circle all that apply.)
(c) The d.c. gain is $H(0)=1$ when using (P) PI PID control. (Circle all that apply.)
(d) With P control, oscillations in the closed-loop step response can be avoided by choosing $K_{p}<$

(e) With P control, a damping ratio of $\zeta=1 / \sqrt{2}$ can be achieved by choosing $K_{p}=2$.
(f) Using PD control with $K_{p}=25$, the closed-loop step response can be made to achieve its maximum value at time $t_{\max }=2$ seconds by choosing $K_{d}=$

