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Problem Points Score

1 10

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

10 10

TOTAL: 100



1

PROBLEM 1.

Let x( t ) be a real signal whose FT satisfies X(j) = 0 for | – 2f| > f.  Define xI( t ) and 
xQ( t ) as the in-phase and quadrature components of x( t ) w.r.t. f. Suppose we extract the even and 
odd parts of these I&Q components, resulting in four signals (labeled A through D), as shown below:

The above system first downconverts, and second extracts the even and odd parts. 
The system below does things in reverse order: It starts with the same input x( t ), 
but first extracts the even and odd parts, and then downconverts each:

(a) The two systems shown above produce the same set of four outputs: 
One of the four outputs of the second system is signal A, another is signal B, etc. 
Indicate which is which by writing a letter from {A, B, C, D} into each answer box.

(b) Explain!

x( t )

xI( t ) 

xQ( t ) 

A

B

C

D

(For example: signal A is the even part of xI( t ), signal B is the odd part of xI( t ), signal C is the even part of xQ( t ), etc.)

DOWN
CONVERTER

f

EVEN

ODD

EVEN

ODD

I

Q

x( t )

xe( t ) 

xo( t ) 

EVEN

ODD

DOWN
CONVERTER

f

DOWN
CONVERTER

f

I

Q

I

Q

.
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PROBLEM 2.

Let g( t ) = u( t ) – u(t – 2) be a rectangle of width 2, and 
let x( t ) = g( t ) + g( t – ) for some unspecified delay parameter .

(a) The rectangle g( t ) has energy Eg =  and power Pg = .

(b) In the remainder of this problem let Ex(  ) denote the energy of x( t ); 
its dependence on the delay parameter  is made explicit.

The smallest possible value for Ex(  ) is achieved when  = .

(c) The largest possible value for Ex(  ) is achieved when  = .

(d) Find a value of  for which Ex(  ) = 5:  = .

g( t )

0

1

2 t
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PROBLEM 3.

Consider the following 8 signals, all derived from the “sinc-squared” signal x( t ) = 2
2

:

Shown below are plots of several plots of |Y(j)|, the Fourier transform magnitude. 
Match each derived signal above with its corresponding magnitude plot.
Indicate your answer by writing a letter (from {A, ... H}) in each answer above above. 
(Some plots may be used more than once, others may never be used.)

0.5t sin

t
--------------------------- 
 

(1) y1( t ) = 4 x( t )
d
dt
-----

(2) y2( t ) =  x( )x( t – )d 
–





(3) y3( t ) = x( t – 0.5)

(4) y4( t ) = ej
2
x(t)

(5) y5( t ) = x(2t)

(6) y6( t ) = 3x2(t)

(7) y7( t ) = x(0.5t)

(8) y8( t ) = x( t – )d5 sin


----------------------

–





   



   

   

A B C D

E F

G

H

1 1 1 1

1 2

1/2

1

1

1
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PROBLEM 4.

Below are three systems with input x( t ) and output y( t ). Specify which properties they satisfy by 
writing a “Y” (for yes) or “N” (for no) into each answer box:

(a) y( t ) = x( t2)

memoryless causal stable linear time-invariant invertible

(b)  y( t ) = x( t3)

memoryless causal stable linear time-invariant invertible

(c) y( t ) = 3x( t ) + x(t – 1)

memoryless causal stable linear time-invariant invertible
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PROBLEM 5.

A system that is initially at rest (with zero initial conditions) is described by the following 
differential equation relating the input x( t ) to the output y( t ):

 2 y( t ) = 2 x( t ) + 6x( t ) –  y( t ) – 24y( t ).

(a) Sketch the pole-zero plot for the system function H( s ) = Y( s )/X( s ) when  = 16.

(b) If the step response of the system has the form y( t ) = A(1 – e–Bt)u( t ), then it must be that

d2

dt2
-------- d

dt
----- d

dt
-----

 = 

A = 

B = 
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PROBLEM 6.

Suppose the periodic signal x( t ) shown below is fed as an input to an LTI system whose impulse 
response h( t ) =  is a sinc function (the parameter W is positive but otherwise unspecified), 
producing the output y( t ):

(a) For what range of values for the parameter W will the output be a constant, say y( t ) = y0 for all t?

  < W <  

(b) When W is one of the values from part (a), the output constant will be y0 = .

(c) In the space below, carefully sketch the output y( t ) when W =  . (Both axes are already labeled.)

Wt sin

t
---------------------

10 15 20

x( t )

–10 –5 25 305 t0

10

... ...

y( t )x( t )
Wt sin

t
---------------------

  

 

2
10
------

10 15 20

y( t )

–10 –5 25 305 t0

10

... ...

10
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PROBLEM 7.

A sinc-squared function s( t ) = 
2

 is first AM-modulated with carrier 4 rad/s, 
producing x( t ), which is then fed to a back-to-back connection of an ideal analog-to-digital 
converter (ADC) and an ideal digital-analog (DAC) converter, both with sampling rate fs = 1.5 Hz:

(a) The zero-th ADC sample is x[ 0 ] = .

(b) Sketch in the space below the Fourier transform of the three signals s( t ), x( t ) and y( t ):

(c) Label the y-axis in all three sketches of part (b).

0.5t sin

t
--------------------------- 
 

ADC DAC
y( t )

fs = 1.5 Hz

x[n ]x( t )
s( t ) =

0.5t sin

t
--------------------------- 
 2

cos(4t)

0 4 8 12–4–8–12


S(j)

X(j)

Y(j)

0 4 8 12–4–8–12


0 4 8 12–4–8–12

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(d) The DAC output y( t ) can be written in the form y( t ) = A  – C , where
(sin Bt)
t

-------------------- (sin Dt)
t

--------------------- 
 2

A = 

B = 

C = 

D = 
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PROBLEM 8.

Consider the control system shown below:

(a) When F( s ) = 1, 

the range of values for K that make the closed-loop system stable is 

(b) Delay in the Feedback Path — Let’s consider what happens when the feedback path has delay, so 
that the error signal is not e( t ) = r( t ) – y( t ), but instead is e( t ) = r( t ) – y(t – ), where  is the 
feedback delay. In principle we can model this delay by choosing the feedback transfer function 
shown in the above diagram to be F( s ) = e–s, but this would lead to an irrational transfer function 
that prevents us from thinking about poles and zeros. Therefore, let us instead adopt the Padé 
approximation, namely e–s≈ , and set the feedback transfer function to:

F( s ) = .

With this choice for F( s ), and with a delay of  = 2, 

the range of values for K that make the closed-loop system stable is 

r( t )

y( t )
+

–

1

s 1+
-------------

PLANT

REFERENCE K

CONTROLLER

F( s )

 

1 s/2–
1 s/2+
---------------------

1 s/2–
1 s/2+
---------------------
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PROBLEM 9.

Consider P-control for a second-order plant with transfer function Gp( s ) = , 
as shown below:

(a) If the reference is a unit step, r( t ) = u( t ), the steady-state error 
(expressed as a function of the controller gain K) is

ess = limt→∞e( t ) = .

(b) Sketch a pole-zero plot for the closed-loop transfer function H( s ) = Y( s )/R( s ) when K = 6:

1

(s 2)+ (s 3)+
--------------------------------------

r( t )

y( t )
+

– PLANT

REFERENCE

CONTROLLER

1

(s 2)+ (s 3)+
--------------------------------------e( t )

K
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(c) The closed-loop system is critically damped when K = .

(d) To achieve a damping coefficient of  = , the gain must be K = .
1

2
-------



12

PROBLEM 10.

Match each transfer function below with its 
corresponding step response shown to the 
right, by writing a letter from {A ... H} into 
each answer box:

(a) H( s ) = 

(b) H( s ) = 

(c) H( s ) = 

(d) H( s ) = 

(e) H( s ) = 

(f) H( s ) = 

(g) H( s ) = 

(h) H( s ) = 

0 10

0 10

0 10

0 10

0 10

0 10

0 10

0 10
0

2

0

2

0

2

0

2

0

2

0

2

0

2

0

2

t

A

B

C

D

E

F

G

H

36

s2 s 36+ +
---------------------------

36

s2 2s 36+ +
------------------------------

36

s2 4s 36+ +
------------------------------

36

s2 8s 36+ +
------------------------------

9

s2 8s 9+ +
---------------------------

9

s2 4s 9+ +
---------------------------

9

s2 2s 9+ +
---------------------------

9

s2 s 9+ +
------------------------



Table of Fourier Transform Pairs

Signal Name Time-Domain: x(t) Frequency-Domain: X(jω)

Right-sided exponential e−atu(t) (a > 0)
1

a+ jω

Left-sided exponential ebtu(−t) (b > 0)
1

b− jω

Square pulse [u(t+ T/2)− u(t− T/2)]
sin(ωT/2)

ω/2

“sinc” function
sin(ω0t)

πt
[u(ω + ω0)− u(ω − ω0)]

Impulse δ(t) 1

Shifted impulse δ(t− t0) e−jωt0

Complex exponential ejω0t 2πδ(ω − ω0)

General cosine A cos(ω0t+ ϕ) πAejϕδ(ω − ω0) + πAe−jϕδ(ω + ω0)

Cosine cos(ω0t) πδ(ω − ω0) + πδ(ω + ω0)

Sine sin(ω0t) −jπδ(ω − ω0) + jπδ(ω + ω0)

General periodic signal
∞∑

k=−∞
ake

jkω0t
∞∑

k=−∞
2πakδ(ω − kω0)

Impulse train

∞∑
n=−∞

δ(t− nT )
2π

T

∞∑
k=−∞

δ(ω − 2πk/T )

Table of Fourier Transform Properties

Property Name Time-Domain x(t) Frequency-Domain X(jω)

Linearity ax1(t) + bx2(t) aX1(jω) + bX2(jω)

Conjugation x∗(t) X∗(−jω)

Time-Reversal x(−t) X(−jω)

Scaling f(at) 1
|a|X(j(ω/a))

Delay x(t− td) e−jωtdX(jω)

Modulation x(t)ejω0t X(j(ω − ω0))

Modulation x(t) cos(ω0t)
1
2X(j(ω − ω0)) +

1
2X(j(ω + ω0))

Differentiation
dkx(t)

dtk
(jω)kX(jω)

Convolution x(t) ∗ h(t) X(jω)H(jω)

Multiplication x(t)p(t) 1
2πX(jω) ∗ P (jω)

Date 14-Sept-2013



Table of Laplace Transform Pairs

Signal Name Time-Domain: x(t) Laplace-Domain: X(s)

Impulse δ(t) 1

Delayed Impulse δ(t− t0), t0 ≥ 0 e−st0

Step u(t)
1

s

Rectangular Pulse u(t)− u(t− T ), T > 0
1− e−sT

s

Ramp tu(t)
1

s2

Polynomial tku(t), k ≥ 0
k!

sk+1

Exponential e−atu(t)
1

s+ a

Polynomial × Exponential tke−atu(t)
k!

(s+ a)k+1

Cosine cos(ω0t)u(t)
s

s2 + ω2
0

Sine sin(ω0t)u(t)
ω0

s2 + ω2
0

Exponential × Cosine e−at cos(ω0t)u(t)
s+ a

(s+ a)2 + ω2
0

Exponential × Sine e−at sin(ω0t)u(t)
ω0

(s+ a)2 + ω2
0

Table of Laplace Transform Properties

Property Name Time-Domain: x(t) Laplace-Domain: X(s)

Linearity αx1(t) + βx2(t) αX1(s) + βX2(s)

Right-Shift x(t− t0), t0 ≥ 0 e−st0X(s)

Time Scaling x(at), a > 0
1

a
X

(s
a

)
First Derivative ẋ(t) =

d

dt
x(t) sX(s)− x(0)

Second Derivative ẍ(t) =
d2

dt2
x(t) s2X(s)− sx(0)− ẋ(0)

Integration

∫ t

0
x(τ)dτ

X(s)

s

Modulation x(t)eat X(s− a)

Convolution x(t) ∗ h(t) X(s)H(s)

Final Value Theorem lim
t→∞

x(t), (if limit exists) lim
s→0

sX(s)

Initial Value Theorem lim
t→0

x(t), (if limit exists) lim
s→∞

sX(s)

ECE3084: October 6, 2013
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PROBLEM 1.

Let x( t ) be a real signal whose FT satisfies X(j) = 0 for | – 2f| > f.  Define xI( t ) and 
xQ( t ) as the in-phase and quadrature components of x( t ) w.r.t. f. Suppose we extract the even and 
odd parts of these I&Q components, resulting in four signals (labeled A through D), as shown below:

The above system first downconverts, and second extracts the even and odd parts. 
The system below does things in reverse order: It starts with the same input x( t ), 
but first extracts the even and odd parts, and then downconverts each:

(a) The two systems shown above produce the same set of four outputs: 
One of the four outputs of the second system is signal A, another is signal B, etc. 
Indicate which is which by writing a letter from {A, B, C, D} into each answer box.

(b) Explain! In I&Q form: x( t ) = xI( t )cos( . ) – xQ( t )sin( . )

⇒ x( –t ) = xI( –t )cos( . ) + xQ( –t )sin( . )

Add ⇒ xe( t ) = E{xI( t )}cos( . ) – O{xQ( t )}sin( . )

Subtract ⇒ xo( t ) = O{xI( t )}cos( . ) – E{xQ( t )}sin( . )

x( t )

xI( t ) 

xQ( t ) 

A

B

C

D

(For example: signal A is the even part of xI( t ), signal B is the odd part of xI( t ), signal C is the even part of xQ( t ), etc.)

DOWN
CONVERTER

f

EVEN

ODD

EVEN

ODD

I

Q

x( t )

xe( t ) 

xo( t ) 

EVEN

ODD

DOWN
CONVERTER

f

DOWN
CONVERTER

f

I

Q

I

Q

A

D

B

C

A D

B C

.
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PROBLEM 2.

Let g( t ) = u( t ) – u(t – 2) be a rectangle of width 2, and 
let x( t ) = g( t ) + g( t – ) for some unspecified delay parameter .

(a) The rectangle g( t ) has energy Eg =  and power Pg = .

(b) In the remainder of this problem let Ex(  ) denote the energy of x( t ); 
its dependence on the delay parameter  is made explicit.

The smallest possible value for Ex(  ) is achieved when  = .

(c) The largest possible value for Ex(  ) is achieved when  = .

(d) Find a value of  for which Ex(  ) = 5:  = .

Ex = (g( ) + g( t – ))2dt = 2 + 2 + 2 g( )g( t – )dt

= 4 + 2(2 – ) 

= 8 – 2 = 5 when  = 1.5

g( t )

0

1

2 t

 2  0

 any |  | > 2

Energy minimized when no overlap:
g( t )  + g( t – )



 0

Energy maximized when 100% overlap:
g( t ) + g( t – 0) = 2g( t )



 1.5

–




–







3

PROBLEM 3.

Consider the following 8 signals, all derived from the “sinc-squared” signal x( t ) = 2
2

:

Shown below are plots of several plots of |Y(j)|, the Fourier transform magnitude. 
Match each derived signal above with its corresponding magnitude plot.
Indicate your answer by writing a letter (from {A, ... H}) in each answer above above. 
(Some plots may be used more than once, others may never be used.)

0.5t sin

t
--------------------------- 
 

(1) y1( t ) = 4 x( t )
d
dt
-----

(2) y2( t ) =  x( )x( t – )d 
–





(3) y3( t ) = x( t – 0.5)

(4) y4( t ) = ej
2
x(t)

(5) y5( t ) = x(2t)

(6) y6( t ) = 3x2(t)

(7) y7( t ) = x(0.5t)

(8) y8( t ) = x( t – )d5 sin


----------------------

–





H

D

C

C

G

B

F

C

   



   

   

A B C D

E F

G

H

1 1 1 1

1 2

1/2

1

1

1
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PROBLEM 4.

Below are three systems with input x( t ) and output y( t ). Specify which properties they satisfy by 
writing a “Y” (for yes) or “N” (for no) into each answer box:

(a) y( t ) = x( t2)

memoryless causal stable linear time-invariant invertible

(b)  y( t ) = x( t3)

memoryless causal stable linear time-invariant invertible

(c) y( t ) = 3x( t ) + x(t – 1)

memoryless causal stable linear time-invariant invertible

Y Y

Y Y Y

Y Y Y Y Y
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PROBLEM 5.

A system that is initially at rest (with zero initial conditions) is described by the following 
differential equation relating the input x( t ) to the output y( t ):

 2 y( t ) = 2 x( t ) + 6x( t ) –  y( t ) – 24y( t ).

(a) Sketch the pole-zero plot for the system function H( s ) = Y( s )/X( s ) when  = 16.

(b) If the step response of the system has the form y( t ) = A(1 – e–Bt)u( t ), then it must be that

d2

dt2
-------- d

dt
----- d

dt
-----

2s 6+
2s2 s 24+ +
--------------------------------- s 3+

s2

2
---s 12+ +

------------------------------=

Take LT of both sides, solve for Y( s )/X( s )

⇒ H( s ) =

 = 16 ⇒ H( s ) = 
s 3+

s2 8s 12+ +
----------------------------- s 3+ 

s 2+  s 6+ 
----------------------------------=

–6 –3 –2

 = 

A = 

B = 

s 3+

s2

2
---s 12+ +

------------------------------ s 3+
s 3+  s 4+ 

---------------------------------- 1

s 4+
------------= =

This is the step resp of a first-order system

⇒ we must have pole-zero cancellation:

H( s ) = 

⇒ dc gain is H( 0 ) = A = 1/4

 = 14

14

1

4
---

4

B
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PROBLEM 6.

Suppose the periodic signal x( t ) shown below is fed as an input to an LTI system whose impulse 
response h( t ) =  is a sinc function (the parameter W is positive but otherwise unspecified), 
producing the  output y( t ):

(a) For what range of values for the parameter W will the output be a constant, say y( t ) = y0 for all t?

  < W <  

(b) When W is one of the values from part (a), the output constant will be y0 = .

(c) In the space below, carefully sketch the output y( t ) when W =  . (Both axes are already labeled.)

Wt sin

t
---------------------

10 15 20

x( t )

–10 –5 25 305 t0

10

... ...

y( t )x( t )
Wt sin

t
---------------------

 0  0.2

The cutoff frequency must be less than the fundamental

0 = 2
T0

------ 2
10
------=

 5

The output will be the dc component a0 of input,
scaled by the dc gain H( 0 ) = 1 of the filter ⇒ y0 = a0 = 5

2
10
------

10 15 20

y( t )

–10 –5 25 305 t0

10

... ...

10

y( t ) = a0 + 2a1cos(0.2t) 

20


------= 5 + cos(0.2t)
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PROBLEM 7.

A sinc-squared function s( t ) = 
2

 is first AM-modulated with carrier 4 rad/s, 
producing x( t ), which is then fed to a back-to-back connection of an ideal analog-to-digital 
converter (ADC) and an ideal digital-analog (DAC) converter, both with sampling rate fs = 1.5 Hz:

(a) The zero-th ADC sample is x[ 0 ] = .

(b) Sketch in the space below the Fourier transform of the three signals s( t ), x( t ) and y( t ):

(c) Label the y-axis in all three sketches of part (b).

0.5t sin

t
--------------------------- 
 

ADC DAC
y( t )

fs = 1.5 Hz

x[n ]x( t )
s( t ) =

0.5t sin

t
--------------------------- 
 2

cos(4t)

0.25

0 4 8 12–4–8–12


S(j)

X(j)

Y(j)

0 4 8 12–4–8–12


0 4 8 12–4–8–12


0.5

0.25

0.25
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(d) The DAC output y( t ) can be written in the form y( t ) = A  – C , where
(sin Bt)
t

-------------------- (sin Dt)
t

--------------------- 
 2

A = 

B = 

C = 

D = 

1

4
------

1.5

1

22
--------

0.5
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PROBLEM 8.

Consider the control system shown below:

(a) When F( s ) = 1, 

the range of values for K that make the closed-loop system stable is .

(b) Delay in the Feedback Path — Let’s consider what happens when the feedback path has delay, so 
that the error signal is not e( t ) = r( t ) – y( t ), but instead is e( t ) = r( t ) – y(t – ), where  is the 
feedback delay. In principle we can model this delay by choosing the feedback transfer function 
shown in the above diagram to be F( s ) = e–s, but this would lead to an irrational transfer function 
that prevents us from thinking about poles and zeros. Therefore, let us instead adopt the Padé 
approximation, namely e–s≈ , and set the feedback transfer function to:

F( s ) =  = 

With this choice for F( s ), and with a delay of  = 2, 

the range of values for K that make the closed-loop system stable is .

r( t )

y( t )
+

–

1

s 1+
-------------

PLANT

REFERENCE K

CONTROLLER

F( s )

 K > –1

Closed-loop transfer function is

H( s ) =
K

s K 1+ +
-------------------------- ⇒ pole at –K–1, in left plane when

-
 

1 s/2–
1 s/2+
---------------------

1 s/2–
1 s/2+
---------------------

1 s–
1 s+
------------

 –1 < K < 2

Closed-loop H( s ) =
Ks K+

s2 2 K– s K 1+ + +
----------------------------------------------------------

these must be positive
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PROBLEM 9.

Consider P-control for a second-order plant with transfer function Gp( s ) = , 
as shown below:

(a) If the reference is a unit step, r( t ) = u( t ), the steady-state error 
(expressed as a function of the controller gain K) is

ess = limt→∞e( t ) = .

(b) Sketch a pole-zero plot for the closed-loop transfer function H( s ) = Y( s )/R( s ) when K = 6:

1

(s 2)+ (s 3)+
--------------------------------------

r( t )

y( t )
+

– PLANT

REFERENCE

CONTROLLER

1

(s 2)+ (s 3)+
--------------------------------------e( t )

K

6

K 6+
--------------

Closed-loop transfer function is
K

s2 5s 6 K+ + +
------------------------------------------H( s ) = 

⇒  y( t ) converges to dc gain is H( 0 ) =
K

6 K+
---------------

⇒  e( t ) converges to 1 – H( 0 )

–2.5

≈ 2.40.5 23

H( s ) = 
K

s2 5s 12+ +
--------------------------------
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(c) The closed-loop system is critically damped when K = .

(d) To achieve a damping coefficient of  = , the gain must be K = .

0.25

K
s2 5s 6 K+ + +
------------------------------------------

K
s a+ 2

-------------------=H( s ) = 

Choose K so that both poles have same location:

⇒  a = 2.5

⇒  K = a2 – 6 = 1/4

1

2
------- 6.5

⇒  5 = 2n = 2

⇒  6 + K = = 6.5

6 K+
25

42
--------

Looking at the denominator of H( s ),

the coeff of s is 2n, while the constant term is n
2
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PROBLEM 10.

Match each transfer function below with its 
corresponding step response shown to the 
right, by writing a letter from {A ... H} into 
each answer box:

(a) H( s ) = 

(b) H( s ) = 

(c) H( s ) = 

(d) H( s ) = 

(e) H( s ) = 

(f) H( s ) = 

(g) H( s ) = 

(h) H( s ) = 

0 10

0 10

0 10

0 10

0 10

0 10

0 10

0 10
0

2

0

2

0

2

0

2

0

2

0

2

0

2

0

2

t

A

B

C

D

E

F

G

H

H
36

s2 s 36+ +
---------------------------

G
36

s2 2s 36+ +
------------------------------

F
36

s2 4s 36+ +
------------------------------

E
36

s2 8s 36+ +
------------------------------

A
9

s2 8s 9+ +
---------------------------

B
9

s2 4s 9+ +
---------------------------

C
9

s2 2s 9+ +
---------------------------

D
9

s2 s 9+ +
------------------------


